Research Article
BibTex RIS Cite

Bilgi Erişimi için Eşli bir Sıralama Algoritması

Year 2018, , 399 - 408, 28.12.2018
https://doi.org/10.17798/bitlisfen.432105

Abstract

Yapay
öğrenmede temel problemlerden biri, ilgilenilen birimler arasındaki tercih
ilişkilerinin belirlenmesidir. Bu kapsamda sıralama, verilen bir tercih
ilişkisine göre birimleri düzenleme yeteneğine sahip bir fonksiyonu öğrenmek
olarak tanımlanabilir. Bu tip problemler genellikle örneklerin çiftler olduğu
sınıflandırma problemi olarak ele alınır. Bu çalışmada ise genel sıralamanın
bir tahmini için eşli karşılaştırmalara dayanan bir yaklaşım sunulmuştur. Eşli
sıralama hatasını minimize eden bu sıralama problemi, bir doğrusal eşitlikler
sistemi ile temsil edilmiştir. Bu doğrusal eşitlik sisteminin çözülmesiyle
sıralama fonksiyonlarının öğrenilmesi için gradyan düşümü algoritmasının
geliştirilmiş bir versiyonu önerilmektedir. Ayrıca, oluşturulan sıralama
modelinin genelleştirme performansını kontrol edebilmek için Tikhonov
düzeltmesi de bu çalışma kapsamında kullanılmıştır.

References

  • Caruana, R., Baluja, S., & Mitchell, T. 1996. Using the future to "sort out" the present: Rankpropand multitask learning for medical risk evaluation, Advances in Neural Information Processing Systems, 959-965.
  • Herbrich, R., Graepel, T., & Obermayer, K. 2000. Large margin rank boundaries for ordinal regression. Advances in Large Margin Classifiers, MIT Press, 115-132.
  • Crammer, K., and Yoram S. 2002. Pranking with ranking, Advances in neural information processing systems, 641-647.
  • Menon, A. K. and Williamson, R. C. 2016. Bipartite ranking: a risk-theoretic perspective, Journal of Machine Learning Research, 17(195), 1-102.
  • Haltaş A., Alkan A., Karabulut M. 2015. Performance analysis of heuristic search algorithms in text classification, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (3), 417-427.
  • Kaya, Y., and Ertugrul, O. F. 2016. A novel feature extraction approach for text-based language identification: Binary patterns, Journal Of The Faculty Of Engineering and Architecture Of Gazi University, 31(4), 1085-1094.
  • Harrington, E. 2003. Online ranking/collaborative filtering using the Perceptron algorithm, International Conference on Machine Learning, 250-257.
  • Dekel, O., Singer, Y. and Manning, C.D. 2004. Loglinear models for label-ranking, Advances in neural information processing systems, 497-504.
  • Freund, Y., Iyer, R., Schapire, R. and Singer, Y. 2003. An efficient boosting algorithm for combining preferences, Journal of Machine Learning Research, 4, 933-969.
  • Song, Y., Wang, H. and He, X. 2014. Adapting deep ranknet for personalized search, Proceedings of the 7th ACM international conference on Web search and data mining, 83-92, ACM.
  • Zong, W., and Huang, G. B. 2014. Learning to rank with extreme learning machine, Neural processing letters, 39(2), 155-166.
  • Busa-Fekete, R., and Hüllermeier, E. 2014. A survey of preference-based online learning with bandit algorithms, International Conference on Algorithmic Learning Theory, 18-39, Springer, Cham.
  • Airola, A., Pahikkala, T., and Salakoski, T. 2010. Large scale training methods for linear RankRLS, Proceedings of the ECML/PKDD-Workshop on Preference Learning, E. Hüllermeier and J. Fürnkranz, Eds.
  • Taş, E., and Memmedli, M. 2017. Near optimal step size and momentum in gradient descent for quadratic functions, Turkish Journal of Mathematics, 41(1), 110-121.
  • Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. 2004. Rcv1: A new benchmark collection for text categorization research, Journal of machine learning research, 5(Apr), 361-397.
Year 2018, , 399 - 408, 28.12.2018
https://doi.org/10.17798/bitlisfen.432105

Abstract

References

  • Caruana, R., Baluja, S., & Mitchell, T. 1996. Using the future to "sort out" the present: Rankpropand multitask learning for medical risk evaluation, Advances in Neural Information Processing Systems, 959-965.
  • Herbrich, R., Graepel, T., & Obermayer, K. 2000. Large margin rank boundaries for ordinal regression. Advances in Large Margin Classifiers, MIT Press, 115-132.
  • Crammer, K., and Yoram S. 2002. Pranking with ranking, Advances in neural information processing systems, 641-647.
  • Menon, A. K. and Williamson, R. C. 2016. Bipartite ranking: a risk-theoretic perspective, Journal of Machine Learning Research, 17(195), 1-102.
  • Haltaş A., Alkan A., Karabulut M. 2015. Performance analysis of heuristic search algorithms in text classification, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (3), 417-427.
  • Kaya, Y., and Ertugrul, O. F. 2016. A novel feature extraction approach for text-based language identification: Binary patterns, Journal Of The Faculty Of Engineering and Architecture Of Gazi University, 31(4), 1085-1094.
  • Harrington, E. 2003. Online ranking/collaborative filtering using the Perceptron algorithm, International Conference on Machine Learning, 250-257.
  • Dekel, O., Singer, Y. and Manning, C.D. 2004. Loglinear models for label-ranking, Advances in neural information processing systems, 497-504.
  • Freund, Y., Iyer, R., Schapire, R. and Singer, Y. 2003. An efficient boosting algorithm for combining preferences, Journal of Machine Learning Research, 4, 933-969.
  • Song, Y., Wang, H. and He, X. 2014. Adapting deep ranknet for personalized search, Proceedings of the 7th ACM international conference on Web search and data mining, 83-92, ACM.
  • Zong, W., and Huang, G. B. 2014. Learning to rank with extreme learning machine, Neural processing letters, 39(2), 155-166.
  • Busa-Fekete, R., and Hüllermeier, E. 2014. A survey of preference-based online learning with bandit algorithms, International Conference on Algorithmic Learning Theory, 18-39, Springer, Cham.
  • Airola, A., Pahikkala, T., and Salakoski, T. 2010. Large scale training methods for linear RankRLS, Proceedings of the ECML/PKDD-Workshop on Preference Learning, E. Hüllermeier and J. Fürnkranz, Eds.
  • Taş, E., and Memmedli, M. 2017. Near optimal step size and momentum in gradient descent for quadratic functions, Turkish Journal of Mathematics, 41(1), 110-121.
  • Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. 2004. Rcv1: A new benchmark collection for text categorization research, Journal of machine learning research, 5(Apr), 361-397.
There are 15 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Engin Taş 0000-0003-3644-0131

Publication Date December 28, 2018
Submission Date June 8, 2018
Acceptance Date December 20, 2018
Published in Issue Year 2018

Cite

IEEE E. Taş, “Bilgi Erişimi için Eşli bir Sıralama Algoritması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 7, no. 2, pp. 399–408, 2018, doi: 10.17798/bitlisfen.432105.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr