Research Article
BibTex RIS Cite

Emotiv Epoc ile Durağan Hal Görsel Uyarılmış Potansiyel Temelli Beyin Bilgisayar Arayüzü Uygulaması

Year 2019, , 158 - 166, 12.03.2019
https://doi.org/10.17798/bitlisfen.445574

Abstract

Beyin
Bilgisayar Arayüzü (BBA), geleneksel iletişim yöntemlerinin kullanılmasını
engelleyen sinir-kas hastalıklarına sahip olan bireyler için yeni bir iletişim
seçeneği sunmaktadır. Durağan hal görsel uyarılmış potansiyel (DHGUP) temelli
BBA sistemleri sağladığı yüksek hız ve kullanım kolaylığı sebebi ile dikkatleri
üzerine çekmektedir. Bu çalışmada Emotiv Epoc EEG cihazı kullanılarak DHGUP
temelli BBA uygulaması gerçekleştirilmiştir. Çalışma ön hazırlık ve gerçek
zamanlı deneyler olmak üzere iki adımdan oluşmaktadır. Yapılan ön hazırlık deneyleri
ile gerçek zamanlı BBA sisteminde kullanılacak DHGUP tespit metodu ve EEG
sinyali toplama süresine karar verilmiştir. Gerçek zamanlı BBA sisteminde ise
tuş takımı biçiminde tasarlanan görsel uyaran düzeneği ile kullanıcıların
yalnız beyin sinyalleri ile telefon numaralarını yazmalarına imkân
sağlanmıştır. 5 kullanıcı ile yapılan deneylerde tasarlanan BBA ile 11 haneli telefon
numarasının ortalama 40 saniyede yazdırılabildiği gösterilmiştir. Bu makale
DHGUP temelli BBA uygulaması için kılavuz niteliğini taşımaktadır.

References

  • Kokswijk J Van, Hulle M Van (2010) Self adaptive BCI as service-oriented information system for patients with communication disabilities. New Trends Inf Sci Serv Sci (NISS), 2010 4th Int Conf 264–269
  • Santhosh J, Bhatia M, Sahu S, Anand S (2004) Quantitative EEG analysis for assessment to “plan” a task in amyotrophic lateral sclerosis patients: a study of executive functions (planning) in ALS patients. Brain Res Cogn Brain Res 22:59–66 . doi: 10.1016/j.cogbrainres.2004.07.009
  • Wolpaw JR, Birbaumer N, McFarland DJ, et al (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791 . doi: 10.1016/S1388-2457(02)00057-3
  • Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 11:449–455 . doi: 10.3109/17482961003777470
  • Chen X, Wang Y, Nakanishi M, et al (2015) High-speed spelling with a noninvasive brain–computer interface. Proc Natl Acad Sci 112:1–10 . doi: 10.1073/pnas.1508080112
  • Sözer AT, Fidan CB (2017) Novel Detection Features for SSVEP Based BCI: Coefficient of Variation and Variation Speed. BRAIN Broad Res Artif Intell Neurosci 8:144–150
  • Wang Y, Gao X, Hong B, et al (2008) Brain-Computer Interfaces Based on Visual Evoked Potentials. IEEE Eng Med Biol Mag 27:64–71 . doi: 10.1109/MEMB.2008.923958
  • Sozer AT, Fidan CB (2016) Implementation of a steady state visual evoked potantial based brain computer interface. In: 2016 24th Signal Processing and Communication Application Conference (SIU). IEEE, pp 1173–1176
  • Sözer AT, Fidan CB (2018) Novel spatial filter for SSVEP-based BCI: A generated reference filter approach. Comput Biol Med 96:98–105 . doi: 10.1016/j.compbiomed.2018.02.019
  • van Vliet M, Robben A, Chumerin N, et al (2012) Designing a brain-computer interface controlled video-game using consumer grade EEG hardware. In: 2012 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC). IEEE, pp 1–6
  • Choi B, Jo S (2013) A Low-Cost EEG System-Based Hybrid Brain-Computer Interface for Humanoid Robot Navigation and Recognition. PLoS One 8:e74583 . doi: 10.1371/journal.pone.0074583
  • Badcock NA, Mousikou P, Mahajan Y, et al (2013) Validation of the Emotiv EPOC ® EEG gaming system for measuring research quality auditory ERPs. PeerJ 1:e38 . doi: 10.7717/peerj.38
  • Chumerin N, Manyakov N V., Van Vliet M, et al (2013) Steady-state visual evoked potential-based computer gaming on a consumer-grade EEG device. IEEE Trans Comput Intell AI Games 5:100–110 . doi: 10.1109/TCIAIG.2012.2225623
  • Cogent Graphics (2017) Laboratory of Neurobiology. http://www.vislab.ucl.ac.uk/cogent_graphics.php. Accessed 1 Jul 2017
  • Hwang HJ, Lim JH, Jung YJ, et al (2012) Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard. J Neurosci Methods 208:59–65 . doi: 10.1016/j.jneumeth.2012.04.011
  • Sanchez G, Diez PF, Avila E, Leber EL (2011) Simple communication using a SSVEP-based BCI. J Phys Conf Ser 332:012017 . doi: 10.1088/1742-6596/332/1/012017
  • Yan Z, Gao X, Bin G, et al (2009) A half-field stimulation pattern for SSVEP-based brain-computer interface. Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2009:6461–4 . doi: 10.1109/IEMBS.2009.5333544
  • Lin Z, Zhang C, Wu W, Gao X (2007) Frequency recognition based on canonical correlation analysis for SSVEP-Based BCIs. IEEE Trans Biomed Eng 54:1172–1176 . doi: 10.1109/TBME.2006.889197
  • Poryzala P, Materka A (2014) Cluster analysis of CCA coefficients for robust detection of the asynchronous SSVEPs in brain–computer interfaces. Biomed Signal Process Control 10:201–208 . doi: 10.1016/j.bspc.2013.11.003
  • Cao L, Ju Z, Li J, et al (2015) Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces. J Neurosci Methods 253:10–17 . doi: 10.1016/j.jneumeth.2015.05.014
  • Nakanishi M, Wang Y, Wang Y-T, et al (2014) A High-Speed Brain Speller Using Steady-State Visual Evoked Potentials. Int J Neural Syst 24:1450019 . doi: 10.1142/S0129065714500191
  • Nakanishi M, Wang Y, Wang Y-T, Jung T-P (2015) A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials. PLoS One 10:e0140703 . doi: 10.1371/journal.pone.0140703
Year 2019, , 158 - 166, 12.03.2019
https://doi.org/10.17798/bitlisfen.445574

Abstract

References

  • Kokswijk J Van, Hulle M Van (2010) Self adaptive BCI as service-oriented information system for patients with communication disabilities. New Trends Inf Sci Serv Sci (NISS), 2010 4th Int Conf 264–269
  • Santhosh J, Bhatia M, Sahu S, Anand S (2004) Quantitative EEG analysis for assessment to “plan” a task in amyotrophic lateral sclerosis patients: a study of executive functions (planning) in ALS patients. Brain Res Cogn Brain Res 22:59–66 . doi: 10.1016/j.cogbrainres.2004.07.009
  • Wolpaw JR, Birbaumer N, McFarland DJ, et al (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791 . doi: 10.1016/S1388-2457(02)00057-3
  • Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 11:449–455 . doi: 10.3109/17482961003777470
  • Chen X, Wang Y, Nakanishi M, et al (2015) High-speed spelling with a noninvasive brain–computer interface. Proc Natl Acad Sci 112:1–10 . doi: 10.1073/pnas.1508080112
  • Sözer AT, Fidan CB (2017) Novel Detection Features for SSVEP Based BCI: Coefficient of Variation and Variation Speed. BRAIN Broad Res Artif Intell Neurosci 8:144–150
  • Wang Y, Gao X, Hong B, et al (2008) Brain-Computer Interfaces Based on Visual Evoked Potentials. IEEE Eng Med Biol Mag 27:64–71 . doi: 10.1109/MEMB.2008.923958
  • Sozer AT, Fidan CB (2016) Implementation of a steady state visual evoked potantial based brain computer interface. In: 2016 24th Signal Processing and Communication Application Conference (SIU). IEEE, pp 1173–1176
  • Sözer AT, Fidan CB (2018) Novel spatial filter for SSVEP-based BCI: A generated reference filter approach. Comput Biol Med 96:98–105 . doi: 10.1016/j.compbiomed.2018.02.019
  • van Vliet M, Robben A, Chumerin N, et al (2012) Designing a brain-computer interface controlled video-game using consumer grade EEG hardware. In: 2012 ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC). IEEE, pp 1–6
  • Choi B, Jo S (2013) A Low-Cost EEG System-Based Hybrid Brain-Computer Interface for Humanoid Robot Navigation and Recognition. PLoS One 8:e74583 . doi: 10.1371/journal.pone.0074583
  • Badcock NA, Mousikou P, Mahajan Y, et al (2013) Validation of the Emotiv EPOC ® EEG gaming system for measuring research quality auditory ERPs. PeerJ 1:e38 . doi: 10.7717/peerj.38
  • Chumerin N, Manyakov N V., Van Vliet M, et al (2013) Steady-state visual evoked potential-based computer gaming on a consumer-grade EEG device. IEEE Trans Comput Intell AI Games 5:100–110 . doi: 10.1109/TCIAIG.2012.2225623
  • Cogent Graphics (2017) Laboratory of Neurobiology. http://www.vislab.ucl.ac.uk/cogent_graphics.php. Accessed 1 Jul 2017
  • Hwang HJ, Lim JH, Jung YJ, et al (2012) Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard. J Neurosci Methods 208:59–65 . doi: 10.1016/j.jneumeth.2012.04.011
  • Sanchez G, Diez PF, Avila E, Leber EL (2011) Simple communication using a SSVEP-based BCI. J Phys Conf Ser 332:012017 . doi: 10.1088/1742-6596/332/1/012017
  • Yan Z, Gao X, Bin G, et al (2009) A half-field stimulation pattern for SSVEP-based brain-computer interface. Conf Proc . Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2009:6461–4 . doi: 10.1109/IEMBS.2009.5333544
  • Lin Z, Zhang C, Wu W, Gao X (2007) Frequency recognition based on canonical correlation analysis for SSVEP-Based BCIs. IEEE Trans Biomed Eng 54:1172–1176 . doi: 10.1109/TBME.2006.889197
  • Poryzala P, Materka A (2014) Cluster analysis of CCA coefficients for robust detection of the asynchronous SSVEPs in brain–computer interfaces. Biomed Signal Process Control 10:201–208 . doi: 10.1016/j.bspc.2013.11.003
  • Cao L, Ju Z, Li J, et al (2015) Sequence detection analysis based on canonical correlation for steady-state visual evoked potential brain computer interfaces. J Neurosci Methods 253:10–17 . doi: 10.1016/j.jneumeth.2015.05.014
  • Nakanishi M, Wang Y, Wang Y-T, et al (2014) A High-Speed Brain Speller Using Steady-State Visual Evoked Potentials. Int J Neural Syst 24:1450019 . doi: 10.1142/S0129065714500191
  • Nakanishi M, Wang Y, Wang Y-T, Jung T-P (2015) A Comparison Study of Canonical Correlation Analysis Based Methods for Detecting Steady-State Visual Evoked Potentials. PLoS One 10:e0140703 . doi: 10.1371/journal.pone.0140703
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Abdullah Talha Sözer 0000-0002-7855-6119

Can Bülent Fidan

Publication Date March 12, 2019
Submission Date July 18, 2018
Acceptance Date November 14, 2018
Published in Issue Year 2019

Cite

IEEE A. T. Sözer and C. B. Fidan, “Emotiv Epoc ile Durağan Hal Görsel Uyarılmış Potansiyel Temelli Beyin Bilgisayar Arayüzü Uygulaması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 1, pp. 158–166, 2019, doi: 10.17798/bitlisfen.445574.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS