Zeolitik-imidazolat
iskelet yapılarının (ZIF), yüksek kimyasal ve termal stabiliteye
sahip olmalarının yanısıra ayarlanabilir gözenek boyutları,
yüksek gözeneklilikleri ve geniş yüzey alanına sahip olmaları;
ZIF’ler için gaz ayırma ve saflaştırma gibi yeni ve ilgi çekici
bir uygulama alanı oluşturmuştur. ZIF'lerin sentez gazları
saflaştırma performanslarını araştıran çok sayıda çalışma
olmasına rağmen, soy-gaz ayırma performansları hakkında çok az
bilgi birikimi mevcuttur. Bu nedenle, çalışmamızda ZIF-6, ZIF-60,
ZIF-65 ve ZIF-79'un adsorpsiyon ve difüzyona dayalı Xe/Kr ve Xe/Ar
ayırma performanslarının hesaplamalı yöntemlerle araştırılması
amaçlanmıştır. Tek bileşenli ve karışım gaz adsorpsiyonları,
Xe adsorpsiyon seçiciliği, gaz geçirgenliği ve Xe geçirgenlik
seçiciliği araştırdığımız ZIF'ler için tahmin edilmiştir.
Sonuçlarımız, ZIF-79'un adsorpsiyona dayalı Xe ayrımı için
ideal olmasına rağmen, ZIF-60'ın Xe'nin membran bazlı ayırımı
için umut vaadeden bir aday olarak kabul edilebileceğini
göstermektedir.
1. Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., Yaghi, O. M. 2006. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks, Proceedings of the National Academy of Sciences, 103 (27): 10186–10191.
2. Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., Yaghi, O. M. 2008. High-throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture, Science, 319 (5865): 939–943.
3. Grau-Crespo, R., Aziz, A., Collins, A. W., Crespo-Otero, R., Hernández, N. C., Rodriguez Albelo, L. M., Ruiz-Salvador, A. R., Calero, S., Hamad, S. 2016. Modelling a Linker Mix and Match Approach for Controlling the Optical Excitation Gaps and Band Alignment of Zeolitic Imidazolate Frameworks, Angewandte Chemie International Edition, 55 (52): 16012–16016.
4. Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O’Keeffe, M., Yaghi, O. M. 2009. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and Their Carbon dioxide Selective Capture Properties, Journal of the American Chemical Society, 131 (11): 3875–3877.
5. Liu, J., Keskin, S., Sholl, D. S., Johnson, J. K. 2011. Molecular Simulations and Theoretical Predictions for Adsorption and Diffusion of CH4/H2 and CO2/CH4 Mixtures in Zifs, The Journal of Physical Chemistry C, 115 (25): 12560–12566.
6. Liu, Y., Hu, E., Khan, E. A., Lai, Z. 2010. Synthesis and Characterization of Zif-69 Membranes and Separation for CO2/CO Mixture, Journal of Membrane Science, 353 (1): 36–40.
7. Yumru, A. B., Safak Boroglu, M., Boz, I. 2018. Zif-11/matrimid R Mixed Matrix Membranes for Efficient CO2, CH4, and H2 Separations, Greenhouse Gases: Science and Technology, 8 (3): 529–541.
8. Battisti, A., Taioli, S., Garberoglio, G. 2011. Zeolitic Imidazolate Frameworks for Separation of Binary Mixtures of CO2, CH4, N2 and H2: A Computer Simulation Investigation, Microporous and Mesoporous Materials, 143 (1): 46–53.
9. Chokbunpiam, T., Fritzsche, S., Chmelik, C., Caro, J., Janke, W., Hannongbua, S. 2016. Gate Opening, Diffusion, and Adsorption of CO2 and N2 Mixtures in Zif-8, The Journal of Physical Chemistry C, 120 (41): 23458–23468.
10. McDaniel, J. G., Yu, K., Schmidt, J. R. 2012. Ab Initio, Physically Motivated Force Fields for CO2 Adsorption in Zeolitic Imidazolate Frameworks, The Journal of Physical Chemistry C, 116 (2): 1892–1903.
11. Chen, B., Yang, Z., Zhu, Y., Xia, Y. 2014. Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications, Journal of Material Chemistry A, 2,16811–6831.
12. Günay Sezer, G., Erucar, I. 2017. Hydrothermal Synthesis, Crystal Structure, and Properties of 1D Zigzag Chain Zinc(ii) Coordination Polymer Constructed From Nicotinic Acid and 1,4-bis(imidazol-1-ylmethyl)benzene, Journal of the Turkish Chemical Society, Section A: Chemistry, 23–38.
13. Gulcay, E., Erucar, I. 2019. Molecular Simulations of Cofs, Irmofs and Zifs for Adsorption-based Separation of Carbon Tetrachloride From Air, Journal of Molecular Graphics and Modelling, 86, 84–94.
14. Wang, Q., Xiong, S., Xiang, Z., Peng, S., Wang, X., Cao, D. 2016. Dynamic Separation of Xe and Kr by Metal-Organic Framework and Covalent-Organic Materials: A Comparison with Activated Charcoal, Science China Chemistry, 59 (5): 643–650.
15. Wang, Q., Wang, H., Peng, S., Peng, X., Cao, D. 2014. Adsorption and Separation of Xe in Metal–Organic Frameworks and Covalent–Organic Materials, The Journal of Physical Chemistry C, 118 (19): 10221–10229.
16. Magdysyuk, O. V., Adams, F., Liermann, H.-P., Spanopoulos, I., Trikalitis, P. N., Hirscher, M., Morris, R. E., Duncan, M. J., McCormick, L. J., Dinnebier, R. E. 2014. Understanding the Adsorption Mechanism of Noble Gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and Zif-8, Physical Chemistry Chemical Physics, 16, 23908–23914.
17. Gurdal, Y., Keskin, S. 2012. Atomically Detailed Modeling of Metal Organic Frameworks for Adsorption, Diffusion, and Separation of Noble Gas Mixtures, Industrial & Engineering Chemistry Research, 51 (21): 7373–7382.
18. Gurdal, Y., Keskin, S. 2013. Predicting Noble Gas Separation Performance of Metal Organic Frameworks Using Theoretical Correlations, The Journal of Physical Chemistry C, 117 (10): 5229–5241.
19. Allen, M., Tildesley, J. 1987. Computer Simulations of Liquids. Oxford Science Publications, Oxford
20. Frenkel, D., Smit, B. 1987. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, San Diego.
21. Atci, E., Keskin, S. 2012. Understanding the Potential of Zeolite Imidazolate Framework Membranes in Gas Separations Using Atomically Detailed Calculations, The Journal of Physical Chemistry C, 116 (29): 15525–15537.
22. Maitland, G. C., Rigby, M., Smith, E. B., Wakeham, W. A. 1981. Intermolecular Forces: Their Origin and Determination. Clarendon Press, Oxford.
23. Ryan, P., Farha, O. K., Broadbelt, L. J., Snurr, R. Q. 2011. Computational Screening of Metal- Organic Frameworks for Xenon/Krypton Separation, AIChE Journal, 57 (7): 1759–1766.
24. Mayo, S. L., Olafson, B. D., Goddard, W. A. 1990. Dreiding: A Generic Force Field for Molecular Simulations, The Journal of Physical Chemistry, 94 (26): 8897–8909.
25. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., Skiff, W. M. 1992. UFF, A full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations, Journal of the American Chemical Society, 114 (25): 10024–10035.
26. Talu, O., Myers, A. L. 2001. Reference Potentials for Adsorption of Helium, Argon, Methane, and Krypton in High-Silica Zeolites, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188, 83–93.
27. Gurdal, Y., Keskin, S. 2016. A New Approach for Predicting Gas Separation Performances of Mof Membranes, Journal of Membrane Science, 519, 45–54.
28. Ackerman, D. M., Skoulidas, A. I., Sholl, D. S., Johnson, J. K. 2003. Diffusivities of Ar and Ne in Carbon Nanotubes, Molecular Simulation, 29 (10-11): 677–684.
29. Keil, F., Krishna, R., Coppens, M. 2011. Modeling of Diffusion in Zeolites, Reviews in Chemical Engineering, 16,71–197.
30. Altintas, C., Keskin, S. 2017. Molecular Simulations of Mof Membranes for Separation of Ethane/Ethene and Ethane/Methane Mixtures, RSC Advances, 7,52283–52295.
31. Keffer, D., McCormick, A., Davis, H. 1996. Unidirectional and Single-file Diffusion in AlPO4-5: Molecular Dynamics Investigations, Molecular Physics, 87 (2): 367–387.
32. Sholl, D. S., Lee, C. K. 2000. Influences of Concerted Cluster Diffusion on Single-file Diffusion of CF4 in Alpo4-5 and Xe in Alpo4-31, The Journal of Chemical Physics, 112 (2): 817–824.
33. Sumer, Z., Keskin, S. 2017. Molecular Simulations of Mof Adsorbents and Membranes for Noble Gas Separations, Chemical Engineering Science, 164,108–121.
34. Nakai, Y., Yoshimizu, H., Tsujita, Y. 2005. Enhanced Gas Permeability of Cellulose Acetate Membranes Under Microwave Irradiation, Journal of Membrane Science, 256 (1): 72–77.
Computational Assessment of Zeolitic-Imidazolate Frameworks (ZIFs) for Adsorption and Diffusion Based Separation of Noble Gas Mixtures
Zeolite imidazolate frameworks (ZIFs) possess exceptional chemical
and thermal stabilities together with tunable pore sizes, high
porosities, and large surface areas which opens new and exciting
application areas of ZIFs, such as gas separation and purification.
Although, there have been significant number of studies investigating
syngas separation performances of ZIFs, currently very little is know
about their noble gas separation performances. We, therefore,
computationally investigate adsorption and membrane oriented Xe/Kr
and Xe/Ar separation performances of ZIF-6, ZIF-60, ZIF-65, and
ZIF-79. Single component and mixture gas uptakes, Xe adsorption
selectivities, gas permeabilities, and Xe permeation selectivities
are predicted for all ZIFs under consideration. Our results suggest
that while ZIF-79 is ideal for adsorption-based Xe separation,
ZIF-60 can be considered as a promising candidate for membrane
oriented separation of Xe.
1. Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., Yaghi, O. M. 2006. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks, Proceedings of the National Academy of Sciences, 103 (27): 10186–10191.
2. Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., Yaghi, O. M. 2008. High-throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture, Science, 319 (5865): 939–943.
3. Grau-Crespo, R., Aziz, A., Collins, A. W., Crespo-Otero, R., Hernández, N. C., Rodriguez Albelo, L. M., Ruiz-Salvador, A. R., Calero, S., Hamad, S. 2016. Modelling a Linker Mix and Match Approach for Controlling the Optical Excitation Gaps and Band Alignment of Zeolitic Imidazolate Frameworks, Angewandte Chemie International Edition, 55 (52): 16012–16016.
4. Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O’Keeffe, M., Yaghi, O. M. 2009. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and Their Carbon dioxide Selective Capture Properties, Journal of the American Chemical Society, 131 (11): 3875–3877.
5. Liu, J., Keskin, S., Sholl, D. S., Johnson, J. K. 2011. Molecular Simulations and Theoretical Predictions for Adsorption and Diffusion of CH4/H2 and CO2/CH4 Mixtures in Zifs, The Journal of Physical Chemistry C, 115 (25): 12560–12566.
6. Liu, Y., Hu, E., Khan, E. A., Lai, Z. 2010. Synthesis and Characterization of Zif-69 Membranes and Separation for CO2/CO Mixture, Journal of Membrane Science, 353 (1): 36–40.
7. Yumru, A. B., Safak Boroglu, M., Boz, I. 2018. Zif-11/matrimid R Mixed Matrix Membranes for Efficient CO2, CH4, and H2 Separations, Greenhouse Gases: Science and Technology, 8 (3): 529–541.
8. Battisti, A., Taioli, S., Garberoglio, G. 2011. Zeolitic Imidazolate Frameworks for Separation of Binary Mixtures of CO2, CH4, N2 and H2: A Computer Simulation Investigation, Microporous and Mesoporous Materials, 143 (1): 46–53.
9. Chokbunpiam, T., Fritzsche, S., Chmelik, C., Caro, J., Janke, W., Hannongbua, S. 2016. Gate Opening, Diffusion, and Adsorption of CO2 and N2 Mixtures in Zif-8, The Journal of Physical Chemistry C, 120 (41): 23458–23468.
10. McDaniel, J. G., Yu, K., Schmidt, J. R. 2012. Ab Initio, Physically Motivated Force Fields for CO2 Adsorption in Zeolitic Imidazolate Frameworks, The Journal of Physical Chemistry C, 116 (2): 1892–1903.
11. Chen, B., Yang, Z., Zhu, Y., Xia, Y. 2014. Zeolitic Imidazolate Framework Materials: Recent Progress in Synthesis and Applications, Journal of Material Chemistry A, 2,16811–6831.
12. Günay Sezer, G., Erucar, I. 2017. Hydrothermal Synthesis, Crystal Structure, and Properties of 1D Zigzag Chain Zinc(ii) Coordination Polymer Constructed From Nicotinic Acid and 1,4-bis(imidazol-1-ylmethyl)benzene, Journal of the Turkish Chemical Society, Section A: Chemistry, 23–38.
13. Gulcay, E., Erucar, I. 2019. Molecular Simulations of Cofs, Irmofs and Zifs for Adsorption-based Separation of Carbon Tetrachloride From Air, Journal of Molecular Graphics and Modelling, 86, 84–94.
14. Wang, Q., Xiong, S., Xiang, Z., Peng, S., Wang, X., Cao, D. 2016. Dynamic Separation of Xe and Kr by Metal-Organic Framework and Covalent-Organic Materials: A Comparison with Activated Charcoal, Science China Chemistry, 59 (5): 643–650.
15. Wang, Q., Wang, H., Peng, S., Peng, X., Cao, D. 2014. Adsorption and Separation of Xe in Metal–Organic Frameworks and Covalent–Organic Materials, The Journal of Physical Chemistry C, 118 (19): 10221–10229.
16. Magdysyuk, O. V., Adams, F., Liermann, H.-P., Spanopoulos, I., Trikalitis, P. N., Hirscher, M., Morris, R. E., Duncan, M. J., McCormick, L. J., Dinnebier, R. E. 2014. Understanding the Adsorption Mechanism of Noble Gases Kr and Xe in CPO-27-Ni, CPO-27-Mg, and Zif-8, Physical Chemistry Chemical Physics, 16, 23908–23914.
17. Gurdal, Y., Keskin, S. 2012. Atomically Detailed Modeling of Metal Organic Frameworks for Adsorption, Diffusion, and Separation of Noble Gas Mixtures, Industrial & Engineering Chemistry Research, 51 (21): 7373–7382.
18. Gurdal, Y., Keskin, S. 2013. Predicting Noble Gas Separation Performance of Metal Organic Frameworks Using Theoretical Correlations, The Journal of Physical Chemistry C, 117 (10): 5229–5241.
19. Allen, M., Tildesley, J. 1987. Computer Simulations of Liquids. Oxford Science Publications, Oxford
20. Frenkel, D., Smit, B. 1987. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, San Diego.
21. Atci, E., Keskin, S. 2012. Understanding the Potential of Zeolite Imidazolate Framework Membranes in Gas Separations Using Atomically Detailed Calculations, The Journal of Physical Chemistry C, 116 (29): 15525–15537.
22. Maitland, G. C., Rigby, M., Smith, E. B., Wakeham, W. A. 1981. Intermolecular Forces: Their Origin and Determination. Clarendon Press, Oxford.
23. Ryan, P., Farha, O. K., Broadbelt, L. J., Snurr, R. Q. 2011. Computational Screening of Metal- Organic Frameworks for Xenon/Krypton Separation, AIChE Journal, 57 (7): 1759–1766.
24. Mayo, S. L., Olafson, B. D., Goddard, W. A. 1990. Dreiding: A Generic Force Field for Molecular Simulations, The Journal of Physical Chemistry, 94 (26): 8897–8909.
25. Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., Skiff, W. M. 1992. UFF, A full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations, Journal of the American Chemical Society, 114 (25): 10024–10035.
26. Talu, O., Myers, A. L. 2001. Reference Potentials for Adsorption of Helium, Argon, Methane, and Krypton in High-Silica Zeolites, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188, 83–93.
27. Gurdal, Y., Keskin, S. 2016. A New Approach for Predicting Gas Separation Performances of Mof Membranes, Journal of Membrane Science, 519, 45–54.
28. Ackerman, D. M., Skoulidas, A. I., Sholl, D. S., Johnson, J. K. 2003. Diffusivities of Ar and Ne in Carbon Nanotubes, Molecular Simulation, 29 (10-11): 677–684.
29. Keil, F., Krishna, R., Coppens, M. 2011. Modeling of Diffusion in Zeolites, Reviews in Chemical Engineering, 16,71–197.
30. Altintas, C., Keskin, S. 2017. Molecular Simulations of Mof Membranes for Separation of Ethane/Ethene and Ethane/Methane Mixtures, RSC Advances, 7,52283–52295.
31. Keffer, D., McCormick, A., Davis, H. 1996. Unidirectional and Single-file Diffusion in AlPO4-5: Molecular Dynamics Investigations, Molecular Physics, 87 (2): 367–387.
32. Sholl, D. S., Lee, C. K. 2000. Influences of Concerted Cluster Diffusion on Single-file Diffusion of CF4 in Alpo4-5 and Xe in Alpo4-31, The Journal of Chemical Physics, 112 (2): 817–824.
33. Sumer, Z., Keskin, S. 2017. Molecular Simulations of Mof Adsorbents and Membranes for Noble Gas Separations, Chemical Engineering Science, 164,108–121.
34. Nakai, Y., Yoshimizu, H., Tsujita, Y. 2005. Enhanced Gas Permeability of Cellulose Acetate Membranes Under Microwave Irradiation, Journal of Membrane Science, 256 (1): 72–77.
Y. Gürdal Durğun, “Computational Assessment of Zeolitic-Imidazolate Frameworks (ZIFs) for Adsorption and Diffusion Based Separation of Noble Gas Mixtures”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 3, pp. 1009–1018, 2019, doi: 10.17798/bitlisfen.527828.