Research Article
BibTex RIS Cite

Determination The Heavy Metal Concentrations of Phragmites australis (Cav.) Trin. Ex Steudel, Typha angustifolia L., Lythrum salicaria L. Plants And Surrounding Sediments In The Ahlat Reeds

Year 2019, , 795 - 805, 30.09.2019
https://doi.org/10.17798/bitlisfen.533110

Abstract

In this study, determination the heavy metal concentrations of Ahlat Reeds’ dominant species of which were Phragmites australis, Typha angustifolia and Lythrum salicaria and the sediments surrounding these plants were emphasized. It is aimed to give contribution to both studies carried out in order to determine the effect of heavy metal pollutant intake into the plant body in the wetlands and to improve the remediation capacity of aquatic environment by applying phytoremediation method with the obtained results. In this study, we tried to determine the metal pollution level in the region by determining the heavy metal tolerance capacity of these plants. Metal (Mg, Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb and Ca ) tolerance capacity of plants used in this study (Phragmites australis, Typha angustifolia and Lythrum salicaria plants) were investigated and accumulation capacity of these plants were determined. According to soil analysis results, average concetrations of Mg, Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb and Ca elements were determined as 480.05, 2.285, 89.47, 1721.5, 2.707, 0.942, 6.611, 0.067, 1.07, 69.255mg kg1 respectively

References

  • 1. Philips D.H., Rainbow P.S. 1994. Biomonitoring of trace aquatic contaminants. Fenviron. 87. London.
  • 2. Bergman H.L., Kimerle R.A., Maki A.W. 1986. Environmental hazard assesment of effluents. Pergamon Press. New York.
  • 3. Chen Y.C., Chen M.H. 2001. Heavy metal concentrations in nine species of fishes caught in coastal waters of Ann-Ping. S.W. Taiwan. Journal of Food and Drug Anal., 9 (2): 107-114.
  • 4. Henderson-Sellers B., Markland H.R. 1987. “Decaying lakes,” The origins and control of cultural eutrophication, John Wiley and Sons Publication. New Jersey.
  • 5. Kocataş A. 1996. Ekoloji ve Çevre Biyolojisi, Ege Üniv. Su Ürünleri Fak. Yayınları No: 51, Ege Üniv. Basımevi. İzmir.
  • 6. Rai U.N., Tripathi R.D., Vajpayee P., Vidyanath J., Ali M.B. 2002. Bioaccumulation of toxic metals (Cr, Cd, Pb and Cu) by seeds of Euryale ferox Salisb (Makhana). Chemosphere, 46: 267–272.
  • 7. Rainbow P.S. 1995. Biomonitoring of Heavy Metal Availability in the Marine Environment. Mar Poll Bull., 31: 183-192.
  • 8. Serfor-Armah Y., Nyarko B.J.B., Osae E.K., Carboo D., Seku F. 2001. Rhodophyta Seaweed Species as Bioindicators for Monitoring Toxic Element Pollutants in the Marine Ecosystem of Ghana. Wat, Air, and Soil Poll., 127: 243-253.
  • 9. Taylan Z.S., Özkoç H.B. 2007. Potansiyel ağır metal kirliliğinin belirlenmesinde akuatik organizmaların biokullanılabilirliliği. BAÜ FBE Dergisi, 9 (2): 17-33.
  • 10. Farooq M., Anwar F., Rashid U. 2008. Appraisal of Heavy Metal Contents in DifferentVegetables Grown in the Vicinity of an Industrial Area. Pak. J. Bot., 40 (5): 2099-2106.
  • 11. Novotny V,1995. Diffuse Source of Pollution by Toxic Metals and Impact on Waters, Heavy Metals Problems and Solutions, Salamons, W., Förstner, U and Mader, P. (Eds.). Springer Verlag., 412-413.
  • 12. Akbıyık F. 2012. Felent Çayı’nda mikro ve makro elementlerin biyotik ve abiyotik öğelerde birikimlerinin araştırılması. Yüksek Lisans Tezi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • 13. Halim M., Conte P., Piccolo A. 2003. Potential Availability of Heavy Metals to Phytoextraction from Contaminated SoilsI by Exogenous Humic Substances. Chemosphere, 52: 265.
  • 14. Samarghandi M.R., Nouri J., Mesdaghinia A.R., Mahvi A.H., Nasseri S., Vaezi F. 2007. Efficiency Removal of Phenol, Lead and Cadmium by Means of UV/TiO2/H2O2 Processes. Int J of Environ Sci and Tech., 4: 19-25.
  • 15. Long X.X., Yang X.E., Ni W.Z. 2002. Current Status and Perspective on Phytoremediation of Heavy Metal Polluted Soils. J of App Eco., 13: 757-762.
  • 16. Blaylock M.J., Huang J.W. 2000. Phytoextraction of Metals. In: Raskin, I. ve Ensley, B.D. (eds.), Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment. Wiley. New York.
  • 17. Salt D.E., Blaylock M., Kumar P.B.A., Dushenkov V., Ensley B.D., Chet I., Raskin I. 1995. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals From the Environment Using Plants. Bio/Tech., 13: 468-474.
  • 18. Glass D.J. 2000. The 2000 Phytoremediation Industry. Glass Associates, Needham, MA.
  • 19. Arshad M., Silvestre J., Pinelli E., Kallerhoff J., Kaemmerer M., Tarigo A. 2008. A Field Study of Lead Phytoextraction by Various Scented Pelargonium Cultivars. Chemosphere, 71: 2187-2192.
  • 20. Shi W.Y., Shao H.B., Li H., Shao M.A., Du S. 2009. Co-Remediation of the Lead Polluted Garden Soil by Exogenous Natural Zeolite and Humic Acids. J of Hazard Mat., 167: 136-140.
  • 21. Salt D.E., Smith R.D., Raskin I. 1998. Phytoremediation. Annual Review. P Phys and Plant Mol Bio., 49: 643 – 668.
  • 22. Lasat M.M. 2002. Phytoextraction of Toxic Metals: A Review of Mechanisms. J of Environ Qua., 31: 109 – 120.
  • 23. Glick B.R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotech Advan., 21: 383 – 393.
  • 24. Lehoczky É., Németh T., Kiss Z., Szalai T. 2002. Heavy metal uptake by ryegrass, lettuce and white mustard plants on different soils. 7th WCSS, August 14– 21,Thailand.
  • 25. Demirezen D. 2002. Sultan Sazlığı ve Çevresindeki Sucul Ekosistemlerde Ağır Metal Kirliliğinin İncelenmesi. Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • 26. Davis P.H. 1965. Flora of Turkey and the East Aegean Islands vol. 1-9. Edinburgh: Edinburgh University Press.
  • 27. Motivans K., Apfelbaum S. 1987. Element stewardship abstract for Typha spp., North American cattails. The Nature Conservancy.
  • 28. Keddy, P.A., Ellis T.H. 1985. Seedling recruitment of 11 wetland plant species along a water level gradient: shared or distinct responses? Can. J. Bot 63:1876-1879. 29. Apfelbaum S.I. 1985. Cattail (Typha spp.) management. Natural Areas Journ. 5 (3): 9-17.
  • 30. Demirezen D., Aksoy A. 2004. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56: 685-696.
  • 31. Madejôn P., Marañôn T., Murillo J.M., Robinson B. 2004. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environ. Pollut., 132: 145–155.
  • 32. Chaney R.L. 1989. Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food chains. In: Bar-Yosef B, Barrow N.J, Goldshmid J. (Eds.), Inorganic Contaminants in the Vadose Zone. Springer-Verlag, Berlin, 140–158.
  • 33. Allen S.E. 1989. Analysis of Ecological Materials, 2nd. ed., Blackwell Scentific Publications, Oxford.
  • 34. Duman F. 2001. Sarımsaklı - Karasu’da yetişen Phragmites australis (Cav.) Trin ex.steud ve Typha angustifolia L. Bitkileri ve Bunları Çevreleyen Sedimentlerde Ağır Metal Tayini, Y. Lisans Tezi, E. Ü. Fen Bil. Enst., Kayseri.
  • 35. McKee J., Richards A.J. 1996. Variation in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate, New Phytologist, 155, 233-243.
  • 36. McNaughton S.J., Folsom,T. C., Lee T., Park F., Price C., Roeder D., Schmitz J., Stockwell C. 1974. Heavy metal tolerance in Typha latifolia without the evolution of tolerant races, Ecology, 55: 1163-1165.
  • 37. Sawidis T., Chettri M. K., Zachariadis G. A., Stratis J. A. 1995. Heavy metals in aquatic plant and sediments from water system in Macedonia , Greece , Ecotoxicol. Environ. Safety, 32: 73-80.
  • 38. Bragato C., Brix H., Malagoli M. 2006. Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ. Pollut., 144: 967–975.
  • 39. Lesage E., Rousseau D.P.L., Meers E., Tack F.M.G., De-Pauw N. 2007. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci. Total Environ., 380: 102–115.
  • 40. Vymazal J., Svehla J., Kröpfelová L., Chrastný V. 2007. Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Sci. Tot Env., 380: 154–162.
  • 41. Nicholls A.M., Mal T.K. 2003. Effects of lead and copper exposure on growth of an invasive weed, Lythrum salicaria L. (Purple Loosestrife). Ohio Journal of Science, 103: 129–133.
  • 42. Anonim 2005. Resmi Gazete. Toprak Kirliliğinin Kontrolü Yönetmeliği. 31/05/2005 tarihli, 25831 sayılı.
  • 43. Lindsay W.L., Norvell W.A. 1978. Development of a DTPA Soil Test for Zinc, Iron, Manganase and Copper. Soil Sci. Soc. Am. J. 42: 421- 428.

Ahlat Sazlıklarındaki, Phragmites australis (cav.) Trin. Ex stend, Typha angustifolia L., Lythrum salicaria L. Bitkilerinin ve Bunları Çevreleyen Sedimentlerde Ağır Metal Konsantrasyonlarının Belirlenmesi

Year 2019, , 795 - 805, 30.09.2019
https://doi.org/10.17798/bitlisfen.533110

Abstract

Bu
çalışmada, Ahlat Sazlıklarının baskın türleri olan Phragmites australis (kamış), Typha angustifolia (saz) ve Lythrum salicaria (hevhulma) bitki türleri ve bu
bitkileri çevreleyen sedimentlerde ağır metal konsantrasyonlarının belirlenmesi
üzerinde durulmuştur. Elde edilen sonuçlar ile sahada
fitoremediasyon yöntemi uygulanarak sulak alanlardaki ağır metal
kirleticilerinin bitki bünyesine alımı ve sucul ortamın kendini iyileştirme
çabasının tespit edilmesi için yapılan çalışmalara katkı verilmesi amaçlanmıştır.
Çalışmamızda bu bitkilerin ağır metal tolere edebilme kapasiteleri
belirlenerek bölgedeki metal kirlilik seviyesi tespit edilmeye çalışılmıştır.
Çalışmada kullanılan Phragmites australis, Typha angustifolia ve Lythrum salicaria bitkileri
üzerinde:
Mg,
Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb ve Ca
metallerini
tolere edebilme kapasitelerine bakılmış ve
bu bitkilerin metalleri
akümüle etme seviyeleri belirlenmiştir. Toprak analizleri sonucunda
Mg, Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb veCa elementlerinin
ortalama konsantrasyonları sırasıyla 480.05, 2.285, 89.47, 1721.5, 2.707,
0.942, 6.611, 0.067, 1.07, 69.255mg kg-1 olarak tespit edilmiştir.

References

  • 1. Philips D.H., Rainbow P.S. 1994. Biomonitoring of trace aquatic contaminants. Fenviron. 87. London.
  • 2. Bergman H.L., Kimerle R.A., Maki A.W. 1986. Environmental hazard assesment of effluents. Pergamon Press. New York.
  • 3. Chen Y.C., Chen M.H. 2001. Heavy metal concentrations in nine species of fishes caught in coastal waters of Ann-Ping. S.W. Taiwan. Journal of Food and Drug Anal., 9 (2): 107-114.
  • 4. Henderson-Sellers B., Markland H.R. 1987. “Decaying lakes,” The origins and control of cultural eutrophication, John Wiley and Sons Publication. New Jersey.
  • 5. Kocataş A. 1996. Ekoloji ve Çevre Biyolojisi, Ege Üniv. Su Ürünleri Fak. Yayınları No: 51, Ege Üniv. Basımevi. İzmir.
  • 6. Rai U.N., Tripathi R.D., Vajpayee P., Vidyanath J., Ali M.B. 2002. Bioaccumulation of toxic metals (Cr, Cd, Pb and Cu) by seeds of Euryale ferox Salisb (Makhana). Chemosphere, 46: 267–272.
  • 7. Rainbow P.S. 1995. Biomonitoring of Heavy Metal Availability in the Marine Environment. Mar Poll Bull., 31: 183-192.
  • 8. Serfor-Armah Y., Nyarko B.J.B., Osae E.K., Carboo D., Seku F. 2001. Rhodophyta Seaweed Species as Bioindicators for Monitoring Toxic Element Pollutants in the Marine Ecosystem of Ghana. Wat, Air, and Soil Poll., 127: 243-253.
  • 9. Taylan Z.S., Özkoç H.B. 2007. Potansiyel ağır metal kirliliğinin belirlenmesinde akuatik organizmaların biokullanılabilirliliği. BAÜ FBE Dergisi, 9 (2): 17-33.
  • 10. Farooq M., Anwar F., Rashid U. 2008. Appraisal of Heavy Metal Contents in DifferentVegetables Grown in the Vicinity of an Industrial Area. Pak. J. Bot., 40 (5): 2099-2106.
  • 11. Novotny V,1995. Diffuse Source of Pollution by Toxic Metals and Impact on Waters, Heavy Metals Problems and Solutions, Salamons, W., Förstner, U and Mader, P. (Eds.). Springer Verlag., 412-413.
  • 12. Akbıyık F. 2012. Felent Çayı’nda mikro ve makro elementlerin biyotik ve abiyotik öğelerde birikimlerinin araştırılması. Yüksek Lisans Tezi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir.
  • 13. Halim M., Conte P., Piccolo A. 2003. Potential Availability of Heavy Metals to Phytoextraction from Contaminated SoilsI by Exogenous Humic Substances. Chemosphere, 52: 265.
  • 14. Samarghandi M.R., Nouri J., Mesdaghinia A.R., Mahvi A.H., Nasseri S., Vaezi F. 2007. Efficiency Removal of Phenol, Lead and Cadmium by Means of UV/TiO2/H2O2 Processes. Int J of Environ Sci and Tech., 4: 19-25.
  • 15. Long X.X., Yang X.E., Ni W.Z. 2002. Current Status and Perspective on Phytoremediation of Heavy Metal Polluted Soils. J of App Eco., 13: 757-762.
  • 16. Blaylock M.J., Huang J.W. 2000. Phytoextraction of Metals. In: Raskin, I. ve Ensley, B.D. (eds.), Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment. Wiley. New York.
  • 17. Salt D.E., Blaylock M., Kumar P.B.A., Dushenkov V., Ensley B.D., Chet I., Raskin I. 1995. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals From the Environment Using Plants. Bio/Tech., 13: 468-474.
  • 18. Glass D.J. 2000. The 2000 Phytoremediation Industry. Glass Associates, Needham, MA.
  • 19. Arshad M., Silvestre J., Pinelli E., Kallerhoff J., Kaemmerer M., Tarigo A. 2008. A Field Study of Lead Phytoextraction by Various Scented Pelargonium Cultivars. Chemosphere, 71: 2187-2192.
  • 20. Shi W.Y., Shao H.B., Li H., Shao M.A., Du S. 2009. Co-Remediation of the Lead Polluted Garden Soil by Exogenous Natural Zeolite and Humic Acids. J of Hazard Mat., 167: 136-140.
  • 21. Salt D.E., Smith R.D., Raskin I. 1998. Phytoremediation. Annual Review. P Phys and Plant Mol Bio., 49: 643 – 668.
  • 22. Lasat M.M. 2002. Phytoextraction of Toxic Metals: A Review of Mechanisms. J of Environ Qua., 31: 109 – 120.
  • 23. Glick B.R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotech Advan., 21: 383 – 393.
  • 24. Lehoczky É., Németh T., Kiss Z., Szalai T. 2002. Heavy metal uptake by ryegrass, lettuce and white mustard plants on different soils. 7th WCSS, August 14– 21,Thailand.
  • 25. Demirezen D. 2002. Sultan Sazlığı ve Çevresindeki Sucul Ekosistemlerde Ağır Metal Kirliliğinin İncelenmesi. Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • 26. Davis P.H. 1965. Flora of Turkey and the East Aegean Islands vol. 1-9. Edinburgh: Edinburgh University Press.
  • 27. Motivans K., Apfelbaum S. 1987. Element stewardship abstract for Typha spp., North American cattails. The Nature Conservancy.
  • 28. Keddy, P.A., Ellis T.H. 1985. Seedling recruitment of 11 wetland plant species along a water level gradient: shared or distinct responses? Can. J. Bot 63:1876-1879. 29. Apfelbaum S.I. 1985. Cattail (Typha spp.) management. Natural Areas Journ. 5 (3): 9-17.
  • 30. Demirezen D., Aksoy A. 2004. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56: 685-696.
  • 31. Madejôn P., Marañôn T., Murillo J.M., Robinson B. 2004. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environ. Pollut., 132: 145–155.
  • 32. Chaney R.L. 1989. Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food chains. In: Bar-Yosef B, Barrow N.J, Goldshmid J. (Eds.), Inorganic Contaminants in the Vadose Zone. Springer-Verlag, Berlin, 140–158.
  • 33. Allen S.E. 1989. Analysis of Ecological Materials, 2nd. ed., Blackwell Scentific Publications, Oxford.
  • 34. Duman F. 2001. Sarımsaklı - Karasu’da yetişen Phragmites australis (Cav.) Trin ex.steud ve Typha angustifolia L. Bitkileri ve Bunları Çevreleyen Sedimentlerde Ağır Metal Tayini, Y. Lisans Tezi, E. Ü. Fen Bil. Enst., Kayseri.
  • 35. McKee J., Richards A.J. 1996. Variation in seed production and germinability in common reed (Phragmites australis) in Britain and France with respect to climate, New Phytologist, 155, 233-243.
  • 36. McNaughton S.J., Folsom,T. C., Lee T., Park F., Price C., Roeder D., Schmitz J., Stockwell C. 1974. Heavy metal tolerance in Typha latifolia without the evolution of tolerant races, Ecology, 55: 1163-1165.
  • 37. Sawidis T., Chettri M. K., Zachariadis G. A., Stratis J. A. 1995. Heavy metals in aquatic plant and sediments from water system in Macedonia , Greece , Ecotoxicol. Environ. Safety, 32: 73-80.
  • 38. Bragato C., Brix H., Malagoli M. 2006. Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ. Pollut., 144: 967–975.
  • 39. Lesage E., Rousseau D.P.L., Meers E., Tack F.M.G., De-Pauw N. 2007. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci. Total Environ., 380: 102–115.
  • 40. Vymazal J., Svehla J., Kröpfelová L., Chrastný V. 2007. Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Sci. Tot Env., 380: 154–162.
  • 41. Nicholls A.M., Mal T.K. 2003. Effects of lead and copper exposure on growth of an invasive weed, Lythrum salicaria L. (Purple Loosestrife). Ohio Journal of Science, 103: 129–133.
  • 42. Anonim 2005. Resmi Gazete. Toprak Kirliliğinin Kontrolü Yönetmeliği. 31/05/2005 tarihli, 25831 sayılı.
  • 43. Lindsay W.L., Norvell W.A. 1978. Development of a DTPA Soil Test for Zinc, Iron, Manganase and Copper. Soil Sci. Soc. Am. J. 42: 421- 428.
There are 42 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Şükrü Hayta

Yekta Erkan This is me

Publication Date September 30, 2019
Submission Date February 27, 2019
Acceptance Date April 26, 2019
Published in Issue Year 2019

Cite

IEEE Ş. Hayta and Y. Erkan, “Ahlat Sazlıklarındaki, Phragmites australis (cav.) Trin. Ex stend, Typha angustifolia L., Lythrum salicaria L. Bitkilerinin ve Bunları Çevreleyen Sedimentlerde Ağır Metal Konsantrasyonlarının Belirlenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 3, pp. 795–805, 2019, doi: 10.17798/bitlisfen.533110.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS