Research Article
BibTex RIS Cite
Year 2019, , 1446 - 1457, 24.12.2019
https://doi.org/10.17798/bitlisfen.544205

Abstract

References

  • [1] Ma, J., Su, Y., Zhou, Y., Zhang, Z. (2003). Simulation and prediction on the performance of a vehicle’s hydrogen engine. Int. J. Hydrogen Energy, 28, 77-83.
  • [2] Williams, MV., Russell Kunz, H., Fenton, JM. (2005). Analysis of polarization curves to evaluate polarization sources in hydrogen/air PEM fuel cells. Electrochem. Soc., 152(3), A635-A644.
  • [3] Xu, H., Russell Kunz, HR., Fenton, JM. (2007). Analysis of proton exchange membrane fuel cell polarization losses at elevated temperature 120 C and reduced relative humidity. Electrochim Acta, 52, 3525–33.
  • [4] Das, V., Padmanaban, S., Venkitusamy, K., Selvamuthukumaran, R., Blaabjerg, F., Siano, P. (2017). Recent advances and challenges of fuel cell based power system architectures and control–A review. Renewable and Sustainable Energy Review, 73, 10-18.
  • [5] Zoulias, E. I., Lymberopoulos, N. (2007). Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems. Renewable Energy, 32(4), 680–696.
  • [6] Dursun, E., Kilic, O. (2012). Comparative evaluation of different power management strategies of a stand-alone PV/Wind/PEMFC hybrid power system. Electrical Power and Energy Syst, 34(1), 81–89.
  • [7] Bezmalinović, D., Barbir, F., Tolj, I. (2013). Techno-economic analysis of PEM fuel cells role in photovoltaic-based systems for the remote base stations. Int. J. Hydrogen Energy, 38(1), 417-425.
  • [8] Hosseini, M., Dincer, I. Rosen, M. A. (2013). Hybrid solar-fuel cell combined heat and power systems for residential applications: Energy and exergy analyses. J. Power Sources, 221, 372-380.
  • [9] Schlesinger, H.I., Brown, H.C., Finholt A.E., Gilbreath, J.R., et al., (1953). Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J. Am. Chem. Soc.,
  • [10] Wu, Y., Mohring, RM. (2003). Sodium borohydride for hydrogen storage. Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem., 48, 940.
  • [11] Hua, D., Hanxi, Y., Xinping, A., Chuansin, C. (2003). Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst. Int. J. Hydrogen Energy, 28, 1095-1100.
  • [12] Richardson, BS., Birdwell, JF., Pin, FG., Jansen, JF., Lind, RF. (2005). Sodium borohydride based hybrid power system. J. Power Sources, 145, 21-29.
  • [13] İnger, E., Özdemir, Z., Yaşar, İ., Tırıs, M., Bahar, T., San, FGB. (2006). Sodyum borhidrür üretimi ve doğrudan sodyum borhidrürlü yakıt pili üretimi ve entegrasyonu. Türkiye 10. Enerji Kongresi, 27-30 Kasım, İstanbul.
  • [14] Kojima, Y., Suzuki, K., Kawai Y. (2006). Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2. J. Power Sources, 155, 325-328.
  • [15] Wee, J-H., Lee. K-Y., Kim, S.H. (2006). Sodium borohydride as the hydrogen supplier for proton exchange membrane fuelcell systems. Fuel Processing Technology, 87, 811-819.
  • [16] Marrero-Alfonso, E.Y., Gray, J.R., Davis, T.A., Matthews, M.A. (2007). Minimizing water utilization in hydrolysis of sodium borohydride: The role of sodium metaborate hydrates. Int. J. Hydrogen Energy, 32, 4723-4730.
  • [17] Sammes, N. Fuel cell technology–reaching towards commercialization. British Library Cataloguing in Publication Data, UK, 2005.

Cell-Based Experimental Analysis of a Proton Exchange Membrane Fuel Cell (PEMFC)

Year 2019, , 1446 - 1457, 24.12.2019
https://doi.org/10.17798/bitlisfen.544205

Abstract

This study is focused on sodium borohydride (NaBH4) and a
cell based experimental analysis of Proton Exchange Membrane (PEM) fuel cell.
By keeping NaBH4, citric acid (C6H8O7)
which is used as a catalyzer and pure water at a static charge, the interchange
of a cell based voltage rating of PEM fuel cell with ten cells at two different
temperatures is evaluated. 3 g NaBH4, H2O/NaBH4: 2 mol/mol
(x=0) and C6H8O7 catalyzer/NaBH4: 0.1 g/g
and 250 cm3 of reactor volume production are realized. When the
water temperature was raised to 60 ºC from 40 ºC, total voltage rating increased 6.1%.
While, in the experiment of 40 ºC, the interchange in voltage ratings are
between 0.53 V and 0.78 V, mean values in the experiment of 60 ºC are between
0.61 V and 0.79 V.

References

  • [1] Ma, J., Su, Y., Zhou, Y., Zhang, Z. (2003). Simulation and prediction on the performance of a vehicle’s hydrogen engine. Int. J. Hydrogen Energy, 28, 77-83.
  • [2] Williams, MV., Russell Kunz, H., Fenton, JM. (2005). Analysis of polarization curves to evaluate polarization sources in hydrogen/air PEM fuel cells. Electrochem. Soc., 152(3), A635-A644.
  • [3] Xu, H., Russell Kunz, HR., Fenton, JM. (2007). Analysis of proton exchange membrane fuel cell polarization losses at elevated temperature 120 C and reduced relative humidity. Electrochim Acta, 52, 3525–33.
  • [4] Das, V., Padmanaban, S., Venkitusamy, K., Selvamuthukumaran, R., Blaabjerg, F., Siano, P. (2017). Recent advances and challenges of fuel cell based power system architectures and control–A review. Renewable and Sustainable Energy Review, 73, 10-18.
  • [5] Zoulias, E. I., Lymberopoulos, N. (2007). Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems. Renewable Energy, 32(4), 680–696.
  • [6] Dursun, E., Kilic, O. (2012). Comparative evaluation of different power management strategies of a stand-alone PV/Wind/PEMFC hybrid power system. Electrical Power and Energy Syst, 34(1), 81–89.
  • [7] Bezmalinović, D., Barbir, F., Tolj, I. (2013). Techno-economic analysis of PEM fuel cells role in photovoltaic-based systems for the remote base stations. Int. J. Hydrogen Energy, 38(1), 417-425.
  • [8] Hosseini, M., Dincer, I. Rosen, M. A. (2013). Hybrid solar-fuel cell combined heat and power systems for residential applications: Energy and exergy analyses. J. Power Sources, 221, 372-380.
  • [9] Schlesinger, H.I., Brown, H.C., Finholt A.E., Gilbreath, J.R., et al., (1953). Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J. Am. Chem. Soc.,
  • [10] Wu, Y., Mohring, RM. (2003). Sodium borohydride for hydrogen storage. Prepr. Pap. Am. Chem. Soc. Div. Fuel Chem., 48, 940.
  • [11] Hua, D., Hanxi, Y., Xinping, A., Chuansin, C. (2003). Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst. Int. J. Hydrogen Energy, 28, 1095-1100.
  • [12] Richardson, BS., Birdwell, JF., Pin, FG., Jansen, JF., Lind, RF. (2005). Sodium borohydride based hybrid power system. J. Power Sources, 145, 21-29.
  • [13] İnger, E., Özdemir, Z., Yaşar, İ., Tırıs, M., Bahar, T., San, FGB. (2006). Sodyum borhidrür üretimi ve doğrudan sodyum borhidrürlü yakıt pili üretimi ve entegrasyonu. Türkiye 10. Enerji Kongresi, 27-30 Kasım, İstanbul.
  • [14] Kojima, Y., Suzuki, K., Kawai Y. (2006). Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2. J. Power Sources, 155, 325-328.
  • [15] Wee, J-H., Lee. K-Y., Kim, S.H. (2006). Sodium borohydride as the hydrogen supplier for proton exchange membrane fuelcell systems. Fuel Processing Technology, 87, 811-819.
  • [16] Marrero-Alfonso, E.Y., Gray, J.R., Davis, T.A., Matthews, M.A. (2007). Minimizing water utilization in hydrolysis of sodium borohydride: The role of sodium metaborate hydrates. Int. J. Hydrogen Energy, 32, 4723-4730.
  • [17] Sammes, N. Fuel cell technology–reaching towards commercialization. British Library Cataloguing in Publication Data, UK, 2005.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Adem Yılmaz 0000-0001-7266-0866

Seyfi Şevik This is me

Rifat Yakut

Publication Date December 24, 2019
Submission Date March 25, 2019
Acceptance Date August 6, 2019
Published in Issue Year 2019

Cite

IEEE A. Yılmaz, S. Şevik, and R. Yakut, “Cell-Based Experimental Analysis of a Proton Exchange Membrane Fuel Cell (PEMFC)”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 4, pp. 1446–1457, 2019, doi: 10.17798/bitlisfen.544205.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr