Research Article
BibTex RIS Cite

Kompozit Fren Balatasında Bakır Oranının Frenleme Karakteristiğine Etkisi

Year 2019, , 1458 - 1465, 24.12.2019
https://doi.org/10.17798/bitlisfen.547099

Abstract

Taşıtların durması veya yavaşlatılması için fren
sistemi kullanılmaktadır. Fren sisteminde yer alan balatalar diske sürtünerek
aracın durmasını veya yavaşlamasını sağlamaktadır. Balatalar birden fazla
malzemenin karışımından oluşmaktadır. Bakır, fren balatalarında metalik
sürtünme malzemesi olarak kullanılmaktadır. Fren balatalarında kullanılan bakır
termal iletkenliğinin yanında iyi bir fren performansı da sağlamaktadır.  Bu çalışmada, fren balatalarında kullanılan
bakırın frenleme performansına etkisi araştırılmıştır. Hazırlanan balata
karışımı içerisine %5, %10 ve %15 oranlarında bakır ilave edilerek üç farklı
balata üretilmiştir. Balataların sürtünme katsayısı, aşınma, yoğunluk, sertlik
ölçümleri ve Taramalı elektron mikroskobu (SEM) görüntüleri alınarak frenleme
performansı incelenmiştir. Bakır oranı arttıkça balata performansının
iyileştiği görülmüştür.   

References

  • Yawas D.S., Aku S.Y., Amaren S.G. 2016. Morphology and Properties of Periwinkle Shell Asbestos-Free Brake Pad, Journal of King Saud University, Engineering Sciences, 28 (1): 103-109.
  • Sugozu I., Mutlu I., Sugozu B. 2018. The Effect of Ulexite to The Tribological Properties of Brake Lining Materials, Polymer Composites, 39 (1): 55-62.
  • Mahale V, Bijwe J, Sinha S. 2017. Influence of Nano-Potassium Titanate Particles on The Performance of Nao Brake-Pads, Wear, Vol.376–377, 727-737.
  • Li Z, He M, Dong H, Shu Z, Wang X. 2018. Friction Performance Assessment of Non-Asbestos Organic (Nao) Composite-To-Steel Interface and Polytetrafluoroethylene (PTFE) Composite-To-Steel Interface: Experimental Evaluation And Application In Seismic Resistant Structures, Construction and Building Materials, Vol: 174, 272-283.
  • Kumar M, Bijwe J. 2011. Non-Asbestos Organic (NAO) Friction Composites: Role of Copper; Its Shape and Amount, Wear, 270(3–4): 269-280.
  • Sugözü, B. 2018. Tribological Properties of Brake Friction Materials Containing Fly Ash. Industrial Lubrication and Tribology, 70 (5): 902-906.
  • Ikpambese K.K., Gundu D.T., Tuleun L.T. 2016. Evaluation of Palm Kernel Fibers (PKFs) For Production of Asbestos-Free Automotive Brake Pads, Journal of King Saud University - Engineering Sciences, 28 (1): 110-118.
  • Sugozu B., Daghan B., Akdemir A., Ataberk N. 2016. Friction and Wear Properties of Friction Materials Containing Nano/Micro-Sized SiO2 Particles, Industrial Lubrication and Tribology, 68 (2): 259-266.
  • Kukutschowa J., Roubicek V., Malachova K., Pavlickova Z., Holusa R., Kubackova J., Micka V., MacCrimmon D., Filip P. 2009. Wear Mechanism in Automotive Brake Materials, Wear Debris and its Potential Environmental Impact, Wear 267, 807–817.
  • Ho S.C., Lin J.H.C., Ju C.P. 2005. Effect of Fiber Addition on Mechanical and Tribological Properties of A Copper/Phenolic-Based Friction Material, Wear 258, 861–869.
  • Handa Y., Kato T. 1996. Effects of Cu Powder BaSO4 and Cashew Dust on The Wear and Friction Characteristics of Automotive Brake Pads, Tribology Transactions. 39 (2): 346-353.
  • TS 555 (Turkish Standard), Highway vehicles, brake systems, brake pads for frictional brake, Turkey, 1992.
  • Nesrine H., Cristol A. L., Najjar D., Elleuch R., Desplanques Y., Influence of Hot Molding Parameters on Tribological and Wear Properties of a Friction Material, Tribology Transactions. 57 (3).
  • Tabor D., 1996. Friction as a Dissipated Process. Friction of Organic Polymers in Fundamentals of Friction. Macroscopic and Microscopic Processes 220 (3).
  • Jang H., KO K., Kım S.J., Basch R.H., Fash J.W. 2004. The Effect of Metal Fibers on The Friction Performance of Automotive Brake Friction Materials”, Wear, 256 (3/4): 406–414.
  • Anderson A.E. 1992. Friction, Lubrication and Wear technology, ASM Handbook, Vol: 18, 569-577.
  • Stachowiak G.W., Batchelor A.W. 2001. Engineering Tribology, Heineman, Boston, 1: 36-44.
  • Sugozu I., Mutlu I., Sugozu B. (2016). The Effect of Colemanite on The Friction Performance of Automotive Brake Friction Materials. Industrial Lubrication and Tribology, 68(1): 92-98.
  • Leonardi M., Menapace C., Matějka V., Gialanella S., Straffelini G. 2018. Pin-on-Disc Investigation on Copper-Free Friction Materials Dry Sliding Against Cast Iron, Tribology International, Volume 119, 73-81.
  • Ravikiran A., Jahanmir S. 2001. Effect of Contact Pressure and Load on Wear of Alumina Wear, 251, 980-984.
  • Shin M.W., Cho K.H., Lee W.K., Jang H., 2010. Tribological Characteristics of Binder Resins for Brake Friction Materials at Elevated Temperatures. Tribology Letters 38 (2):161-168.
  • Hooton N.A. 1969. Metal-Ceramic Composites in High-Energy Friction Applications, Bendix Technical Journal, 55-61.
Year 2019, , 1458 - 1465, 24.12.2019
https://doi.org/10.17798/bitlisfen.547099

Abstract

References

  • Yawas D.S., Aku S.Y., Amaren S.G. 2016. Morphology and Properties of Periwinkle Shell Asbestos-Free Brake Pad, Journal of King Saud University, Engineering Sciences, 28 (1): 103-109.
  • Sugozu I., Mutlu I., Sugozu B. 2018. The Effect of Ulexite to The Tribological Properties of Brake Lining Materials, Polymer Composites, 39 (1): 55-62.
  • Mahale V, Bijwe J, Sinha S. 2017. Influence of Nano-Potassium Titanate Particles on The Performance of Nao Brake-Pads, Wear, Vol.376–377, 727-737.
  • Li Z, He M, Dong H, Shu Z, Wang X. 2018. Friction Performance Assessment of Non-Asbestos Organic (Nao) Composite-To-Steel Interface and Polytetrafluoroethylene (PTFE) Composite-To-Steel Interface: Experimental Evaluation And Application In Seismic Resistant Structures, Construction and Building Materials, Vol: 174, 272-283.
  • Kumar M, Bijwe J. 2011. Non-Asbestos Organic (NAO) Friction Composites: Role of Copper; Its Shape and Amount, Wear, 270(3–4): 269-280.
  • Sugözü, B. 2018. Tribological Properties of Brake Friction Materials Containing Fly Ash. Industrial Lubrication and Tribology, 70 (5): 902-906.
  • Ikpambese K.K., Gundu D.T., Tuleun L.T. 2016. Evaluation of Palm Kernel Fibers (PKFs) For Production of Asbestos-Free Automotive Brake Pads, Journal of King Saud University - Engineering Sciences, 28 (1): 110-118.
  • Sugozu B., Daghan B., Akdemir A., Ataberk N. 2016. Friction and Wear Properties of Friction Materials Containing Nano/Micro-Sized SiO2 Particles, Industrial Lubrication and Tribology, 68 (2): 259-266.
  • Kukutschowa J., Roubicek V., Malachova K., Pavlickova Z., Holusa R., Kubackova J., Micka V., MacCrimmon D., Filip P. 2009. Wear Mechanism in Automotive Brake Materials, Wear Debris and its Potential Environmental Impact, Wear 267, 807–817.
  • Ho S.C., Lin J.H.C., Ju C.P. 2005. Effect of Fiber Addition on Mechanical and Tribological Properties of A Copper/Phenolic-Based Friction Material, Wear 258, 861–869.
  • Handa Y., Kato T. 1996. Effects of Cu Powder BaSO4 and Cashew Dust on The Wear and Friction Characteristics of Automotive Brake Pads, Tribology Transactions. 39 (2): 346-353.
  • TS 555 (Turkish Standard), Highway vehicles, brake systems, brake pads for frictional brake, Turkey, 1992.
  • Nesrine H., Cristol A. L., Najjar D., Elleuch R., Desplanques Y., Influence of Hot Molding Parameters on Tribological and Wear Properties of a Friction Material, Tribology Transactions. 57 (3).
  • Tabor D., 1996. Friction as a Dissipated Process. Friction of Organic Polymers in Fundamentals of Friction. Macroscopic and Microscopic Processes 220 (3).
  • Jang H., KO K., Kım S.J., Basch R.H., Fash J.W. 2004. The Effect of Metal Fibers on The Friction Performance of Automotive Brake Friction Materials”, Wear, 256 (3/4): 406–414.
  • Anderson A.E. 1992. Friction, Lubrication and Wear technology, ASM Handbook, Vol: 18, 569-577.
  • Stachowiak G.W., Batchelor A.W. 2001. Engineering Tribology, Heineman, Boston, 1: 36-44.
  • Sugozu I., Mutlu I., Sugozu B. (2016). The Effect of Colemanite on The Friction Performance of Automotive Brake Friction Materials. Industrial Lubrication and Tribology, 68(1): 92-98.
  • Leonardi M., Menapace C., Matějka V., Gialanella S., Straffelini G. 2018. Pin-on-Disc Investigation on Copper-Free Friction Materials Dry Sliding Against Cast Iron, Tribology International, Volume 119, 73-81.
  • Ravikiran A., Jahanmir S. 2001. Effect of Contact Pressure and Load on Wear of Alumina Wear, 251, 980-984.
  • Shin M.W., Cho K.H., Lee W.K., Jang H., 2010. Tribological Characteristics of Binder Resins for Brake Friction Materials at Elevated Temperatures. Tribology Letters 38 (2):161-168.
  • Hooton N.A. 1969. Metal-Ceramic Composites in High-Energy Friction Applications, Bendix Technical Journal, 55-61.
There are 22 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

İlker Sugözü 0000-0001-8340-8121

Publication Date December 24, 2019
Submission Date March 30, 2019
Acceptance Date October 11, 2019
Published in Issue Year 2019

Cite

IEEE İ. Sugözü, “Kompozit Fren Balatasında Bakır Oranının Frenleme Karakteristiğine Etkisi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 4, pp. 1458–1465, 2019, doi: 10.17798/bitlisfen.547099.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS