Research Article
BibTex RIS Cite

Cevap Yüzey Yöntemi Kullanılarak Poli(VPi–ko-MA) / Grafen Kompozitlerinin İletkenliğinin Optimizasyonu

Year 2020, , 36 - 44, 13.03.2020
https://doi.org/10.17798/bitlisfen.563861

Abstract

Bu
çalışmada, öncelikle poli(Vinil pivalat–ko-Maleik anhidrit) [poli(VPi-ko-MA)]
kopolimeri serbest radikalik polimerizasyon yöntemiyle sentezlenmiştir. Kütlece
farklı miktarlarda Grafen (GF)
içeren kompozitler çözelti döküm
tekniği ile hazırlanmıştır. Kompozitler FT-IR ve SEM teknikleri ile karakterize
edilmiştir. Uygulanan voltaj, frekans ve GF içeriği arasında kantitatif bir
ilişki elde etmek için cevap yüzey yöntemi (CYY) kullanılmıştır. Ölçülen cevap,
kompozitlerin elektriksel (AC) iletkenliğidir. Modeldeki parametrelerin
(frekans, voltaj ve GF miktarı) önemi, varyans analizi ile belirlenmiştir
(ANOVA). Model, maksimum elektriksel iletkenliği, 1619 Hz frekansta, voltaj
15.56 V'da ve GF miktarı ağırlıkça % 9.99 için 6.93×10-8 S cm-1
olarak öngörmüştür.




References

  • 1. Koçyiğit Ü.M., Zengin H.B. 2015. Maleik Anhidrit Vinil Asetat Kopolimerinin Ester ve Karboksilat Tuz Türevlerinin Sentezi ve Karakterizasyonu, Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), 36 (5): 47-56.
  • 2. Tavman D.H., Turgut A. 2006. Mikro ve nano boyutlu tanecik katkılı polimer kompozitlerin mekanik özellikleri, Proceedings of 11th International Materials Symposium, pp 570-575, April 19-21 Nisan, Denizli.
  • 3. Boztuğ A. 1999. Bazı maleik anhidrit terpolimerlerinin ester türevlerinde bilişimin ısısal ve termomekanik özelliklere etkisi. Cumhuriyet Üniversitesi, Fen-Bilimleri Enstitüsü, Doktora tezi, Sivas.
  • 4. Godovsky D.Y. 2000. Device applications of polymer-nanocomposites, Advances in Polymer Science, 153: 163–205.
  • 5. Alexandre M., Dubois P. 2000. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28 (1-2): 1–63.
  • 6. Ray S.S, Okamoto M. 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28 (11): 1539–1641.
  • 7. Garcia N.J, Bazan J.C. 2009. Electrical conductivity of montmorillonite as a function of relative humidity: La-montmorillonite. Clay Minerals, 44 (1): 81–88.
  • 8. Uddin F. 2008. Clays, nanoclays, and montmorillonite minerals, Metallurgical and Materials Transactions A, 39 (12): 2804–2814.
  • 9. Bao Y.Z., Cong L.F., Huang Z.M., Weng Z.X. 2008. Preparation and proton conductivity of poly(vinylidene fluoride)/layered double hydroxide nanocomposite gel electrolytes, Journal of Materials Science, 43 (1): 390–394.
  • 10. Li Q., Park O.K., Lee J.H. 2009. Positive temperature coefficient behavior of HDPE/EVA blends filled with carbon black, Advanced Materials Research, 79: 2267-2270.
  • 11. Geng Y., Liu M.Y., Li J., Shi X.M., Kim J.K. 2008. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing, 39 (12): 1876–1883.
  • 12. Liu N., Luo F., Wu H., Liu Y., Zhang C., Chen J. 2008. One step ionic-liquidassisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Advanced Functional Materials, 18: 1518–1525.
  • 13. Geim A.K., MacDonald A.H. 2007. Graphene: exploring carbon flatland, Physics Today, 60 (8):35–41.
  • 14. Dreyer R.D., Park S., Bielawski C.W., Ruoff R.S. 2010. The chemistry of graphene oxide, Chemical society reviews, 39: 228–240.
  • 15. Allen M.J., Tung V.C., Kaner R.B. 2010. Honeycomb carbon: a review of graphene, Chemical reviews, 110 (1):132–145.
  • 16. Matsuo Y., Hatase K., Sugie Y. 1999. Selective intercalation of aromatic molecules into alkyltrimethylammonium ion-intercalated graphite oxide, Chemistry Letters, 28 (10):1109–1110.
  • 17. Cassagneau T., Fendler J.H. 1998. High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes, Advanced Materials, 10 (11): 877–881.
  • 18. Şengöz O. 2014. Maleik anhidrit içeren kopolimerlerin sentezi, karakterizasyonu ve modifikasyonu, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, yüksek lisans tezi, Konya.
  • 19. Nasouri K., Shoushtari A.M. 2017. Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application, Composites Science and Technology, 145: 46-54.
  • 20. Arabia M., Ghaedia M., Ostovan A. 2016. Development of dummy molecularly imprinted based on functionalized silica nanoparticles for determination of acrylamide in processed food by matrix solid phase dispersion, Food chemistry, 210: 78-84.
  • 21. Dyartanti E.R., Susanto H., Widiasa I.N., Purwanto A. 2017. Response surface method (RSM) for optimization of ionic conductivity of membranes polymer electrolyte poly (vinylidene fluoride) (PVDF) with polyvinyl pyrrolidone (PVP) as pore forming agent, IOP Conf. Series: Materials Science and Engineering 206: 012052.
  • 22. Dincer S., Koseli V., Kesim H., Piskin E. 2002. Radical copolymerization of N-isopropylacrylamide with anhydrides of maleic and citraconic acids, European Polymer Journal, 38 (11): 2143–2152.
  • 23. Kumar R., Singh R., Kumar N., Bishnoi K., Bishnoi N. 2009. Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis, Chemical Engineering Journal, 146 (3): 401–407.
  • 24. Wang B., Okoth O.K., Yan K., Zhang J. 2016. A highly selective electrochemical sensor for 4-chloro phenol determination based on molecularly imprinted polymer and PDDA-functionalized graphene, Sensors and Actuators B: Chemical, 236: 294–303.
  • 25. Tanyol M. 2017. Malahit Yeşili İçeren Atıksuların Fenton Oksidasyon Prosesi İle Renk Gideriminde İşletme Parametrelerinin Optimizasyonu, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29 (1): 183-191.
  • 26. Kar E., Bose N., Dutta B., Mukherjee N., Mukherjee S. 2017. European Polymer Journal, 90: 442-455.
  • 27. Hakkak F., Rafizadeh M., Sarabi A.A., Yousefi M. 2015. Optimization of ionic conductivity of electrospun polyacrylonitrile/poly (vinylidene fluoride) (PAN/PVdF) electrolyte using the response surface method (RSM), Ionics, 21 (7): 1945–1957.
Year 2020, , 36 - 44, 13.03.2020
https://doi.org/10.17798/bitlisfen.563861

Abstract

References

  • 1. Koçyiğit Ü.M., Zengin H.B. 2015. Maleik Anhidrit Vinil Asetat Kopolimerinin Ester ve Karboksilat Tuz Türevlerinin Sentezi ve Karakterizasyonu, Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), 36 (5): 47-56.
  • 2. Tavman D.H., Turgut A. 2006. Mikro ve nano boyutlu tanecik katkılı polimer kompozitlerin mekanik özellikleri, Proceedings of 11th International Materials Symposium, pp 570-575, April 19-21 Nisan, Denizli.
  • 3. Boztuğ A. 1999. Bazı maleik anhidrit terpolimerlerinin ester türevlerinde bilişimin ısısal ve termomekanik özelliklere etkisi. Cumhuriyet Üniversitesi, Fen-Bilimleri Enstitüsü, Doktora tezi, Sivas.
  • 4. Godovsky D.Y. 2000. Device applications of polymer-nanocomposites, Advances in Polymer Science, 153: 163–205.
  • 5. Alexandre M., Dubois P. 2000. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering: R: Reports, 28 (1-2): 1–63.
  • 6. Ray S.S, Okamoto M. 2003. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science, 28 (11): 1539–1641.
  • 7. Garcia N.J, Bazan J.C. 2009. Electrical conductivity of montmorillonite as a function of relative humidity: La-montmorillonite. Clay Minerals, 44 (1): 81–88.
  • 8. Uddin F. 2008. Clays, nanoclays, and montmorillonite minerals, Metallurgical and Materials Transactions A, 39 (12): 2804–2814.
  • 9. Bao Y.Z., Cong L.F., Huang Z.M., Weng Z.X. 2008. Preparation and proton conductivity of poly(vinylidene fluoride)/layered double hydroxide nanocomposite gel electrolytes, Journal of Materials Science, 43 (1): 390–394.
  • 10. Li Q., Park O.K., Lee J.H. 2009. Positive temperature coefficient behavior of HDPE/EVA blends filled with carbon black, Advanced Materials Research, 79: 2267-2270.
  • 11. Geng Y., Liu M.Y., Li J., Shi X.M., Kim J.K. 2008. Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites, Composites Part A: Applied Science and Manufacturing, 39 (12): 1876–1883.
  • 12. Liu N., Luo F., Wu H., Liu Y., Zhang C., Chen J. 2008. One step ionic-liquidassisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Advanced Functional Materials, 18: 1518–1525.
  • 13. Geim A.K., MacDonald A.H. 2007. Graphene: exploring carbon flatland, Physics Today, 60 (8):35–41.
  • 14. Dreyer R.D., Park S., Bielawski C.W., Ruoff R.S. 2010. The chemistry of graphene oxide, Chemical society reviews, 39: 228–240.
  • 15. Allen M.J., Tung V.C., Kaner R.B. 2010. Honeycomb carbon: a review of graphene, Chemical reviews, 110 (1):132–145.
  • 16. Matsuo Y., Hatase K., Sugie Y. 1999. Selective intercalation of aromatic molecules into alkyltrimethylammonium ion-intercalated graphite oxide, Chemistry Letters, 28 (10):1109–1110.
  • 17. Cassagneau T., Fendler J.H. 1998. High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes, Advanced Materials, 10 (11): 877–881.
  • 18. Şengöz O. 2014. Maleik anhidrit içeren kopolimerlerin sentezi, karakterizasyonu ve modifikasyonu, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, yüksek lisans tezi, Konya.
  • 19. Nasouri K., Shoushtari A.M. 2017. Designing, modeling and manufacturing of lightweight carbon nanotubes/polymer composite nanofibers for electromagnetic interference shielding application, Composites Science and Technology, 145: 46-54.
  • 20. Arabia M., Ghaedia M., Ostovan A. 2016. Development of dummy molecularly imprinted based on functionalized silica nanoparticles for determination of acrylamide in processed food by matrix solid phase dispersion, Food chemistry, 210: 78-84.
  • 21. Dyartanti E.R., Susanto H., Widiasa I.N., Purwanto A. 2017. Response surface method (RSM) for optimization of ionic conductivity of membranes polymer electrolyte poly (vinylidene fluoride) (PVDF) with polyvinyl pyrrolidone (PVP) as pore forming agent, IOP Conf. Series: Materials Science and Engineering 206: 012052.
  • 22. Dincer S., Koseli V., Kesim H., Piskin E. 2002. Radical copolymerization of N-isopropylacrylamide with anhydrides of maleic and citraconic acids, European Polymer Journal, 38 (11): 2143–2152.
  • 23. Kumar R., Singh R., Kumar N., Bishnoi K., Bishnoi N. 2009. Response surface methodology approach for optimization of biosorption process for removal of Cr (VI), Ni (II) and Zn (II) ions by immobilized bacterial biomass sp. Bacillus brevis, Chemical Engineering Journal, 146 (3): 401–407.
  • 24. Wang B., Okoth O.K., Yan K., Zhang J. 2016. A highly selective electrochemical sensor for 4-chloro phenol determination based on molecularly imprinted polymer and PDDA-functionalized graphene, Sensors and Actuators B: Chemical, 236: 294–303.
  • 25. Tanyol M. 2017. Malahit Yeşili İçeren Atıksuların Fenton Oksidasyon Prosesi İle Renk Gideriminde İşletme Parametrelerinin Optimizasyonu, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 29 (1): 183-191.
  • 26. Kar E., Bose N., Dutta B., Mukherjee N., Mukherjee S. 2017. European Polymer Journal, 90: 442-455.
  • 27. Hakkak F., Rafizadeh M., Sarabi A.A., Yousefi M. 2015. Optimization of ionic conductivity of electrospun polyacrylonitrile/poly (vinylidene fluoride) (PAN/PVdF) electrolyte using the response surface method (RSM), Ionics, 21 (7): 1945–1957.
There are 27 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Gülben Torğut 0000-0003-1730-1152

Publication Date March 13, 2020
Submission Date May 13, 2019
Acceptance Date November 11, 2019
Published in Issue Year 2020

Cite

IEEE G. Torğut, “Cevap Yüzey Yöntemi Kullanılarak Poli(VPi–ko-MA) / Grafen Kompozitlerinin İletkenliğinin Optimizasyonu”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 1, pp. 36–44, 2020, doi: 10.17798/bitlisfen.563861.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr