Mekanik Alaşımlama Yöntemi ile Üretilen Nanoyapılı Al66Co20Cu14 Tozlarının Termal ve Mikroyapısal Özellikleri
Year 2020,
, 366 - 375, 13.03.2020
Mustafa Okumuş
Abstract
Bu
çalışmada, Al66Co20Cu14 alaşımı elementel
tozlarından mekanik alaşımlama yöntemi ile üretilmiştir. Farklı öğütme
aşamalarında mekaniksel olarak üretilen alaşımın mikroyapısal değişiklikleri ve
termal davranışları, diferansiyel termal analiz (DTA), X-ışını kırınımı (XRD)
ve taramalı elektron mikroskobu (SEM) enerji yayılımlı X-ışını analizi (EDX)
kombinasyonu ile araştırılmıştır. XRD sonuçları Al2Cu, Al13Co4
gibi yeni intermetalik fazların oluşumunu göstermiştir. Öğütme süresine bağlı
olarak tane büyüklüğü kırılma ve deformasyon sonucu küçülerek 25.2 nm olarak
ölçülmüştür. 100 saatlik öğütme ile üretilen numune için faz geçiş aktivasyon
enerjileri hesaplandı ve sonuçlar üretilen alaşımın termal kararlılığa sahip
olduğunu göstermiştir. Ayrıca numunelerim mikroyapısı ve toz bileşenlerin
alaşım içerisindeki dağılım durumu SEM/EDX ile araştırılmıştır. XRD ve SEM/EDX
sonuçları öğütme süresi arttıkça tane boyutunda küçülme ve daha homojen bir
yapı oluştuğunu göstermiştir
Supporting Institution
Batman Üniversitesi Bilimsel Araştırma Projeleri Koordinasyonu Birimi
Thanks
18.002 numaralı Proje'me desteğinden dolayı Batman Üniversitesi Bilimsel Araştırma Projeleri Koordinasyonuna ve XRD analizlerinin yorumlarında teknik desteğinden dolayı Prof. Dr. Musa Göğebakan’a teşekkür ediyorum
References
- 1. Agostinho Jamshi L.C.L., Rodbari R.J. 2018. Evolution of the Phases of Quasicrystalline Alloys Icosahedral/decagonal Al62.2Cu25.3Fe12.5/Al65Ni15Co20 and Oxidative Behaviour, Journal of the Chilean Chemical Society, 63(2): 3928-3933.
- 2. Mohammeda K. S., Naeemb H. T., Iskaka S. N. 2016. Study of the Feasibility of Producing Al–Ni Intermetallic Compounds by Mechanical Alloying, The Physics of Metals and Metallography, 117(8): 795–804.
- 3. Stoloff N., Liu C., Deevi S. 2000. Emerging Applications of Intermetallics, Intermetallics, 8: 1313–1320.
- 4. Yamauchi I., Ohmori M., Ohnaka I. 2000. Metastable Phase Formation by Chemical Leaching of Al–Co–Cu Ternary Alloys, Journal of Alloys and Compounds, 299: 269–275.
- 5. Inoue A. 1998. Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems, Progress in Materials Science, 43(5): 365-520.
- 6. Viet N.H., Oanh N.T.H., Quynh P.N.D., Lap T.Q. ve Kim J.S. 2015. Thermal stability of amorphous Al-Fe-Y prepared by mechanical alloying, Materials Science Forum, 804: 271-274.
- 7. Gogebakan M. 2004. Thermal stability and mechanical properties of Al-based amorphous alloys, Journal of Materials Processing Technology, 153-154: 829-832.
- 8. Avar B., Gogebakan M., Tarakci M., Gencer Y. ve Kerli S. 2013. Microstructural investigations of rapidly solidified Al-Co-Y alloys, Advances in Materials Science and Engineering, 163537.
- 9. Mukhopadhyay N.K., Murthy G.V.S., Murty B.S., Weatherly G.C. 2002. A n investigation on the transformation of the decagonal phase to a B2 phase in Al–Cu–Co alloy during mechanical milling, Journal of Alloys and Compounds, 342: 38–41.
- 10. Yamauchi I., Ohmori M., Ohnaka I. 2000. Rapid solidification and mechanical alloying of Al–Co–Cu ternary alloys for chemical leaching, Journal of Alloys and Compounds, 299: 276–282.
- 11. Bogdanowicz W. 2003. Influence of thermal treatment on the subgrain parameters and microstructure of two-subgrain Al-Cu-Co single quasicrystals, Materials Science and Engineering A 346: 328-335.
- 12. Mishra S.S., Pandey S.K., Yadav T.P., Srivastava O.N. 2017. Influence of chemical leaching on Al-Cu-Co decagonal quasicrystals, Materials Chemistry and Physics, 200: 23-32.
- 13. Roik O.S., Galushko S.M., Samsonnikov O.V., Kazimirov V.P., Sokolskii V.E. 2011. Structure of liquid Al–Cu–Co alloys near the quasicrystal-forming range, Journal of Non-Crystalline Solids 357: 1147–1152.
- 14. Inoue A., 1990. An-Pang Tsai and Tsuyoshi Masumoto: “Stable decagonal and icosahedral quasicrystals”, Journal of Non-Crystalline Solids, 117-118: 824-827.
- 15. Zhang L.M., Gille P. 2004. Solidification study of Al–Co–Cu alloys using the Bridgman method, Journal of Alloys and Compounds, 370: 198–205.
- 16. Murty B.S., Koteswara Rao R.V., Mukhopadhyay N.K. 2004. Stability of quasicrystalline phase in Al–Cu–Fe, Al–Cu–Co and Al–Pd–Mn systems by high energy ball milling, Journal of Non-Crystalline Solids 334&335: 48–51.
- 17. Suryanarayana C., Norton M.G. 1998. “X-ray Diffraction: A Practical Approach,” Plenum Press, New York.
- 18. Mohammed K.S., Naeem H.T., Iskak S.N. 2016. Study of the Feasibility of Producing Al–Ni Intermetallic Compounds by Mechanical Alloying, The Physics of Metals and Metallography, 117(8): 795–804.
- 19. Kursun C., Gogebakan M. 2015. Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying, Journal of Alloys and Compounds, 619: 138–144.
- 20. Gogebakan M., Kursuna C., Eckert J. 2013. Formation of new Cu-based nanocrystalline powders by mechanical alloying technique, Powder Technology, 247: 172–177.
- 21. Bogdanowicz W. 2002. Two-subgrain single quasicrystals Al–Cu–Co alloy growth and characterisation, Journal of Crystal Growth, 240: 255–266.
- 22. Kissinger H.E. 1957. Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29: 1702-1706.