Research Article
BibTex RIS Cite

Bitlis Katı Atık Tesisi Çevresindeki Hypericum scabrum L., Achillea vermicularis Trin, Anchusa azurea Miller var. azurea Gard. Dict. Bitkilerinin Ağır Metal İçeriklerinin Belirlenmesi

Year 2019, , 1533 - 1544, 24.12.2019
https://doi.org/10.17798/bitlisfen.575468

Abstract

Son yıllarda ağır metaller ile kirlenen
toprakların temizlenmesinde (fitoremediasyon) hiperakümülatör bitkilerin
kullanılması ve bu özelliğe sahip bitkilerin tespit
edilmesi oldukça önemlidir. Bu çalışmada bazı
bitkilerin bünyelerinde ağır metal biriktirebilme yetenekleri (hiperakümülatör)
tespit edilmeye çalışılmıştır. Çalışma alanı olarak Bitlis İli Güroymak ilçesi
sınırları içerisinde bulunan Katı Atık Entegre Bertaraf Tesisi çevresi
seçilmiş ve  bu alandan doğal olarak
yetişen
Hypericum scabrum L., Achillea vermicularis Trin, Anchusa
azurea
Miller var. azurea Gard.
Dict.
türlerine ait örnekler
toplanmıştır.
Bu bitkilerinin yetiştiği alandan alınan toprak numuneleri ile kök,
gövde, yaprak ve çiçek gibi kısımlarına ayrılan bu bitkiler üzerinde çalışılarak
Ca,  Mg, Fe, Mn, 
Zn, Cu, Pb, Cr, Ni ve Cd elementlerinin konsantrasyonları incelenmiştir.
Ağır metal analizleri ICP-MS cihazı kullanılarak yapılmıştır.

Supporting Institution

BEBAP

Project Number

2017/12

Thanks

Bu çalışma 2017/12 nolu proje kapsamında Bitlis Eren Üniversitesi Bilimsel Araştırmalar Projeleri Koordinatörlüğüne (BEBAP) tarafından desteklenmiş olup ikinci yazarın yüksek lisans tezinden özetlenmiştir.

References

  • 1. Urano K., Kurihara Y., Seki M., Shinozaki K. 2010. ‘Omics’ Analyses of Regulatory Networks in Plant Abiotic Stress Responses. Current Opinion in Plant Biology. 13: 132-138.
  • 2. Long X.X., Yang X.E., Ni W.Z. 2002. Current Status and Perspective on Phytoremediation of Heavy Metal Polluted Soils. Journal of Applied Ecology. 13: 757–762.
  • 3. Blaylock M.J., Huang J.W. 2000. Phytoextraction of Metals. In: Raskin, I. and Ensley, B.D. (eds.), Phytoremediation of Toxic Metals: Using Plants to Clean–up the Environment. Wiley, New York.
  • 4. Yalçuk A., Evirgen O.A., Uğurlu A. 2004. Tehlikeli Atık Sahalarında Yetişen Hiperakümülatör Bitkiler. 6. Ulusal Kimya Mühendisliği Kongresi, 7-10 Eylül 2004, İzmir.
  • 5. Davis P.H. 1988. Flora of Turkey and the East Aegean Islands. Edinburgh, Edinburgh University Press, pp. 266–400.
  • 6. Tanker N. 1971. Studies on Hypericum scabrum L. J Fac Pharm Ankara Univ., 1: 10–15.
  • 7. Azırak S., Erdoğrul Ö.T. 2003. Antibacterial activities of Hypericum scabrum. ISOPS-7: International Symposium on Pharmaceutical Sciences-7, Ankara University, Faculty of Pharmacy Publications, No: 87. Proceedings and Abstracts, June 23-26, Ankara, Turkey, pp. 17–21.
  • 8. Erdoğrul Ö.T., Azırak S., Tosyalı C. 2004. Antimicrobial activities of Hypericum scabrum L. extracts. KSU J Sci Eng., 7: 38–42.
  • 9. Davis P.H. 1975. Flora of Turkey and the East Aegean Islands. Vol. 5, p. 465-585. Edinburgh University Press.
  • 10. Davis P.H. 1978. Flora of Turkey and the East Aegean Islands. Vol. 6, Edinburgh University Press.
  • 11. Divan Jr A.M., De Oliveira P.L., Perry C.T., Atz V.L., Azzarini-Rostirola L.N., Raya-Rodriguez M.T. 2009. Using wild plant species as indicators for the accumulation of emissions from a thermal power plant, Candiota, South Brazil. Ecol. Indic. 9: 1156–1162.
  • 12. Hernândez L.E., Lozano E., Gârate A., Carpena R. 1998. Influence of cadmium on the uptake, tissue accumulation and subcellular distribution of manganese in pea seedlings. Plant Sci. 132: 139–151.
  • 13. Foyer C.H., Lelandais M., Kunert K.J. 1994. Photooxidative stress in plants. Physiol. Plantarum, 92: 696–717.
  • 14. Ye Z.H., Baker A.J.M., Wong M.H., Willis A.J. 1997. Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmites australis (Cav.) Trin. ex Steudel. Ann. Bot. 80: 363–370.
  • 15. Ederli L., Reale L., Ferranti F., Pasqualini S. 2004. Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant. 121: 66-74.
  • 16. Pietrini F., Iannelli M.A., Pasqualini S., Massacci A. 2003. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. Ex Steudel. Plant Physiol., 133: 829–837.
  • 17. Madejôn P., Marañôn T., Murillo J.M., Robinson B. 2004. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environ. Pollut. 132: 145–155.
  • 18. Chaney R.L. 1989. Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food chains. In: Bar-Yosef B, Barrow N.J, Goldshmid J. (Eds.), Inorganic Contaminants in the Vadose Zone. Springer-Verlag, Berlin, 140–158.
  • 19. Allen S.E. 1989. Chemical Analysis of Ecological Material, 2nd edition. Blackwell Scientific Publications, Oxford, 368 pp.
  • 20. Bragato C., Brix H., Malagoli M. 2006. Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ. Pollut., 144: 967–975.
  • 21. Siedlecka A., Tukendorf A., Skórzynska-Polit E., Maksymiec W., Wónjcik M., Baszynski T., Krupa Z. 2001. Angiosperms (Asteraceae, Convolvulaceae, Fabaceae and Poaceae; other than Brassicaceae). In: Prasad M.N.V. (Ed.), Metals in the Environment. Analysis by Biodiversity. Marcel Dekker Inc, New York, 171–217.
  • 22. Yruela I. 2005. Copper in Plants. Brazilian J. Plant Phys. 17: 145-156.
  • 23. Fürtig K., Pavelic D., Brunold C., Brändle R. 1999. Copper-and-iron induced injuries in roots and rhizomes of reed (Phragmites australis). Limnologica, 29: 60–63.
  • 24. Bonanno G., Giudice R. Lo. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Department of Agronomic and Agrochemical Sciences and Animal Productions, University of Catania, via Valdisavoia 5, 95123 Catania, Sicily, Italy Ecological Indicators, 10: 639–645.
  • 25. Baldantoni D., Alfani A., Di Tommasi P., Bartoli G., Virzo De Santo A. 2004. Assessment ofmacro and microelement accumulation capability of two aquatic plants. Environ. Pollut. 130: 149–156.
  • 26. Demirezen D. 2002. Sultan Sazlığı ve Çevresindeki Sucul Ekosistemlerde Ağır Metal Kirliliğinin İncelenmesi. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi.
  • 27. Samecka-Cymerman A., Kempers A.J. 2001. Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Sci. Total Environ. 281: 87–98.
  • 28. Lesage E., Rousseau D.P.L., Meers E., Tack F.M.G., De Pauw N. 2007. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci. Total Environ. 380: 102–115.
  • 29. Vymazal J., Svehla J., Kröpfelová L., Chrastný V. 2007. Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Sci. Total Environ., 380: 154–162.
  • 30. Duman F. 2001. Sarımsaklı - Karasu’da yetişen Phragmites australis (Cav.) Trin ex.steud ve Typha angustifolia L. Bitkileri ve Bunları Çevreleyen Sedimentlerde Ağır Metal Tayini, Y. Lisans Tezi, E. Ü. Fen Bil. Enst., Kayseri.
  • 31. Windham L., Weis J.S., Weis P. 2003. Uptake and distribution of metals in two dominant salt macrophytes, Spartania alternifolia (cordgrass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science. 56: 63-72.
  • 32. Demirezen D., Aksoy A. 2004. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56: 685-696.
  • 33. Roos M.S. 1994. Sources and forms of potentially toxic metals in soil-plant systems. In: Ross M.S. (Ed.), Toxic Metals in Soil–Plant System. John Wiley, Chichester, pp. 3–25.
  • 34. Quan W.M., Han J.D., Shen A.L., Ping X.Y., Qian P.L., Li C.J., Shi L.Y., Chen Y.Q. 2007. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Mar. Environ. Res. 64: 21–37.
  • 35. Weis J.S., Glover T., Weis P. 2004. Interactions of metals affect their distribution in tissues of Phragmites australis. Environ. Pollut. 131: 409–415.
  • 36. Güven A. 2002. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, Cilt:11, Sayı:1-2.
  • 37. Locascio S.J., Bartz J.A., Weingartner D.P. 1992. Calcium and Potassium Fertilization of Potatoes Grown in North Florida I. Effects On Potato Yield and Tissue Ca And K Concentrations. American Potato Journal, 69(2): 95–104.
  • 38. Lindsay W.L., Norvell W.A. 1978. Development of a DTPA Soil Test for Zinc, Iron, Manganase and Copper. Soil Sci. Soc. Am. J. 42: 421- 428.
  • 39. Anonim 2005. Resmi Gazete. Toprak Kirliliğinin Kontrolü Yönetmeliği. 31/05/2005 tarihli, 25831 sayılı.

Determination of Heavy Metal Contents of Hypericum scabrum L., Achillea vermicularis Trin, Anchusa azurea Miller var. azurea Gard. Dict. Plants Around Bitlis Solid Waste Landfill

Year 2019, , 1533 - 1544, 24.12.2019
https://doi.org/10.17798/bitlisfen.575468

Abstract

At present, it is very important to use hyperaccumulator plants to clean soils contaminated with heavy metals (phytoremediation method) and to identify plants with this characteristic. In this work, it is studied to detect the ability of accumulating heavy metal (hyperacumulator) of some plants in their bodies. The area around the Solid Waste Integrated Disposal Facility located within the boundaries of Güroymak district of Bitlis Province selected and Hypericum scabrum L., Achillea vermicularis Trin, Anchusa azurea Miller. azurea Gard. Dict. naturally grown samples were collected from this area. Soil samples taken from the area where these plants grow with on the basis of the contents of calcium (Ca), magnesium (Mg), copper (Cu), lead (Pb), zinc (Zn), chromium (Cr), nickel (Ni), iron (Fe), manganese (Mn) and cadmium (Cd) were investigated. Heavy metal analyzes were performed using ICP-MS.

Project Number

2017/12

References

  • 1. Urano K., Kurihara Y., Seki M., Shinozaki K. 2010. ‘Omics’ Analyses of Regulatory Networks in Plant Abiotic Stress Responses. Current Opinion in Plant Biology. 13: 132-138.
  • 2. Long X.X., Yang X.E., Ni W.Z. 2002. Current Status and Perspective on Phytoremediation of Heavy Metal Polluted Soils. Journal of Applied Ecology. 13: 757–762.
  • 3. Blaylock M.J., Huang J.W. 2000. Phytoextraction of Metals. In: Raskin, I. and Ensley, B.D. (eds.), Phytoremediation of Toxic Metals: Using Plants to Clean–up the Environment. Wiley, New York.
  • 4. Yalçuk A., Evirgen O.A., Uğurlu A. 2004. Tehlikeli Atık Sahalarında Yetişen Hiperakümülatör Bitkiler. 6. Ulusal Kimya Mühendisliği Kongresi, 7-10 Eylül 2004, İzmir.
  • 5. Davis P.H. 1988. Flora of Turkey and the East Aegean Islands. Edinburgh, Edinburgh University Press, pp. 266–400.
  • 6. Tanker N. 1971. Studies on Hypericum scabrum L. J Fac Pharm Ankara Univ., 1: 10–15.
  • 7. Azırak S., Erdoğrul Ö.T. 2003. Antibacterial activities of Hypericum scabrum. ISOPS-7: International Symposium on Pharmaceutical Sciences-7, Ankara University, Faculty of Pharmacy Publications, No: 87. Proceedings and Abstracts, June 23-26, Ankara, Turkey, pp. 17–21.
  • 8. Erdoğrul Ö.T., Azırak S., Tosyalı C. 2004. Antimicrobial activities of Hypericum scabrum L. extracts. KSU J Sci Eng., 7: 38–42.
  • 9. Davis P.H. 1975. Flora of Turkey and the East Aegean Islands. Vol. 5, p. 465-585. Edinburgh University Press.
  • 10. Davis P.H. 1978. Flora of Turkey and the East Aegean Islands. Vol. 6, Edinburgh University Press.
  • 11. Divan Jr A.M., De Oliveira P.L., Perry C.T., Atz V.L., Azzarini-Rostirola L.N., Raya-Rodriguez M.T. 2009. Using wild plant species as indicators for the accumulation of emissions from a thermal power plant, Candiota, South Brazil. Ecol. Indic. 9: 1156–1162.
  • 12. Hernândez L.E., Lozano E., Gârate A., Carpena R. 1998. Influence of cadmium on the uptake, tissue accumulation and subcellular distribution of manganese in pea seedlings. Plant Sci. 132: 139–151.
  • 13. Foyer C.H., Lelandais M., Kunert K.J. 1994. Photooxidative stress in plants. Physiol. Plantarum, 92: 696–717.
  • 14. Ye Z.H., Baker A.J.M., Wong M.H., Willis A.J. 1997. Zinc, lead and cadmium tolerance, uptake and accumulation by the common reed, Phragmites australis (Cav.) Trin. ex Steudel. Ann. Bot. 80: 363–370.
  • 15. Ederli L., Reale L., Ferranti F., Pasqualini S. 2004. Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant. 121: 66-74.
  • 16. Pietrini F., Iannelli M.A., Pasqualini S., Massacci A. 2003. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. Ex Steudel. Plant Physiol., 133: 829–837.
  • 17. Madejôn P., Marañôn T., Murillo J.M., Robinson B. 2004. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environ. Pollut. 132: 145–155.
  • 18. Chaney R.L. 1989. Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food chains. In: Bar-Yosef B, Barrow N.J, Goldshmid J. (Eds.), Inorganic Contaminants in the Vadose Zone. Springer-Verlag, Berlin, 140–158.
  • 19. Allen S.E. 1989. Chemical Analysis of Ecological Material, 2nd edition. Blackwell Scientific Publications, Oxford, 368 pp.
  • 20. Bragato C., Brix H., Malagoli M. 2006. Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ. Pollut., 144: 967–975.
  • 21. Siedlecka A., Tukendorf A., Skórzynska-Polit E., Maksymiec W., Wónjcik M., Baszynski T., Krupa Z. 2001. Angiosperms (Asteraceae, Convolvulaceae, Fabaceae and Poaceae; other than Brassicaceae). In: Prasad M.N.V. (Ed.), Metals in the Environment. Analysis by Biodiversity. Marcel Dekker Inc, New York, 171–217.
  • 22. Yruela I. 2005. Copper in Plants. Brazilian J. Plant Phys. 17: 145-156.
  • 23. Fürtig K., Pavelic D., Brunold C., Brändle R. 1999. Copper-and-iron induced injuries in roots and rhizomes of reed (Phragmites australis). Limnologica, 29: 60–63.
  • 24. Bonanno G., Giudice R. Lo. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Department of Agronomic and Agrochemical Sciences and Animal Productions, University of Catania, via Valdisavoia 5, 95123 Catania, Sicily, Italy Ecological Indicators, 10: 639–645.
  • 25. Baldantoni D., Alfani A., Di Tommasi P., Bartoli G., Virzo De Santo A. 2004. Assessment ofmacro and microelement accumulation capability of two aquatic plants. Environ. Pollut. 130: 149–156.
  • 26. Demirezen D. 2002. Sultan Sazlığı ve Çevresindeki Sucul Ekosistemlerde Ağır Metal Kirliliğinin İncelenmesi. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi.
  • 27. Samecka-Cymerman A., Kempers A.J. 2001. Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Sci. Total Environ. 281: 87–98.
  • 28. Lesage E., Rousseau D.P.L., Meers E., Tack F.M.G., De Pauw N. 2007. Accumulation of metals in a horizontal subsurface flow constructed wetland treating domestic wastewater in Flanders, Belgium. Sci. Total Environ. 380: 102–115.
  • 29. Vymazal J., Svehla J., Kröpfelová L., Chrastný V. 2007. Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Sci. Total Environ., 380: 154–162.
  • 30. Duman F. 2001. Sarımsaklı - Karasu’da yetişen Phragmites australis (Cav.) Trin ex.steud ve Typha angustifolia L. Bitkileri ve Bunları Çevreleyen Sedimentlerde Ağır Metal Tayini, Y. Lisans Tezi, E. Ü. Fen Bil. Enst., Kayseri.
  • 31. Windham L., Weis J.S., Weis P. 2003. Uptake and distribution of metals in two dominant salt macrophytes, Spartania alternifolia (cordgrass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science. 56: 63-72.
  • 32. Demirezen D., Aksoy A. 2004. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 56: 685-696.
  • 33. Roos M.S. 1994. Sources and forms of potentially toxic metals in soil-plant systems. In: Ross M.S. (Ed.), Toxic Metals in Soil–Plant System. John Wiley, Chichester, pp. 3–25.
  • 34. Quan W.M., Han J.D., Shen A.L., Ping X.Y., Qian P.L., Li C.J., Shi L.Y., Chen Y.Q. 2007. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Mar. Environ. Res. 64: 21–37.
  • 35. Weis J.S., Glover T., Weis P. 2004. Interactions of metals affect their distribution in tissues of Phragmites australis. Environ. Pollut. 131: 409–415.
  • 36. Güven A. 2002. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, Cilt:11, Sayı:1-2.
  • 37. Locascio S.J., Bartz J.A., Weingartner D.P. 1992. Calcium and Potassium Fertilization of Potatoes Grown in North Florida I. Effects On Potato Yield and Tissue Ca And K Concentrations. American Potato Journal, 69(2): 95–104.
  • 38. Lindsay W.L., Norvell W.A. 1978. Development of a DTPA Soil Test for Zinc, Iron, Manganase and Copper. Soil Sci. Soc. Am. J. 42: 421- 428.
  • 39. Anonim 2005. Resmi Gazete. Toprak Kirliliğinin Kontrolü Yönetmeliği. 31/05/2005 tarihli, 25831 sayılı.
There are 39 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Şükrü Hayta 0000-0003-1008-487X

Nurfeşan Avcil This is me 0000-0002-3619-3890

Project Number 2017/12
Publication Date December 24, 2019
Submission Date June 11, 2019
Acceptance Date August 20, 2019
Published in Issue Year 2019

Cite

IEEE Ş. Hayta and N. Avcil, “Bitlis Katı Atık Tesisi Çevresindeki Hypericum scabrum L., Achillea vermicularis Trin, Anchusa azurea Miller var. azurea Gard. Dict. Bitkilerinin Ağır Metal İçeriklerinin Belirlenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 4, pp. 1533–1544, 2019, doi: 10.17798/bitlisfen.575468.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS