Cis ve Trans Formundaki 5-Floropirimidin-2-Karboksilik Asit Molekülünün DFT/TD-DFT ve NBO Analizleri
Year 2020,
, 120 - 129, 13.03.2020
Nihal Kuş
,
Saliha Ilıcan
Abstract
5-Floropirimidin-2-karboksilik asit molekülünün
kararlı durumları, baz setlerine difüz fonksiyonları eklenerek, DFT/B3LYP fonksiyonu
ile hesaplandı. C-C-O-H dihedral açısına bağlı olarak molekülün minimum düzeyde
cis ve trans olarak iki konformasyona sahip olduğu bulundu. Her iki
konformasyon için infrared (IR) spektrum analizi yapılmıştır. Zamana bağlı
yoğunluk fonksiyonel teorisi hesaplarından (TD-DFT) uyarılmış enerji
düzeylerinin singlet ve triplet enerjileri belirlenmiştir. Fock matrisinin
ikinci dereceden pertürbasyon teorisi ile yapılan doğal bağ orbital analizleri
(NBO) ile stabilizasyon enerjileri, ve HOMO-LUMO alt ve üst aralıklarına bağlı enerjileri
hesaplanmıştır. Ayrıca moleküle ait C-C ve C-N bağ uzunlukları kullanılarak
halkaya ait HOMA (Harmonik osilatörde aromatikliğin ölçüsü) dizini bulunmuştur.
References
- 1. Bhagavan N.V., Ha C.-E., in Essentials of Medical Biochemistry (Second Edition), 2015.
- 2. Lamont E. B. , Schilsky R. L. 1999, “The oral fluoropyrimidines in cancer chemotherapy”, Clin Cancer Res. 5(9):2289-96.
- 3. Rustum Y. M. 2003, “Fluoropyrimidines in Cancer Therapy”, ISBN 978-1-59259-337-8, Springer.
- 4. Titov E. V. Prikazchikova L. P. Rybchenko L. I. Cherkasov V. M. Rybachenko V. I. 1972. IR spectra of pyrimidine carboxylic acids and some problems involving their structure. Chemistry of Heterocyclic Compounds Vol: 8 (6): 754-756.
- 5. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A. et al., gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
- 6. Raghavachari K., Binkley J. S., Seeger R., and Pople J. A. 1980, “Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions”, J. Chem. Phys., 72, 650–654
- 7. McLean A. D. and. Chandler G. S. 1980, “Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18”, J. Chem. Phys., 72, 5639–5648.
- 8. Becke A. D. 1988, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A 38, 3098–3100.
- 9. Lee C., Yang W., and Parr R. G. 1988, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, 37, 785–789.
- 10. Vosko S. H., Wilk L., and Nusair M. 1980, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis”, Can. J. Phys. 58, 1200–1211.
- 11. Weinhold F., Landis C.R., Valency and Bonding. A Natural Bond Orbital Donor acceptor Perspective, Cambridge University Press, New York, 2005.
- 12. Reed A.E., Curtiss L.A., Weinhold F. 1988, “Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint”, Chem. Rev. 88, 899-926.
- 13. Lu T., Chen F. 2012, “Multiwfn: A multifunctional wavefunction analyzer”, J. Comp. Chem. 33, 580-593.
- 14. Reva I.D. and Stepanian S.G. 1995, “An infrared study on matrix-isolated benzoic acid”, J. Molec. Struct., 349, 337-340.
- 15. Kuş N., Fausto R., 2014 “Near-infrared and ultraviolet induced isomerization of crotonic acid in N2 and Xe cryomatrices: First observation of two high-energy trans C–O conformers and mechanistic insights”, J. Chem. Phys, 141, 234310.
- 16. Robert C. Hilborn 1982, “Einstein coefficients, cross sections, f values, dipole moments, and all that”, American Journal of Physics 50, 982-986.
- 17. C. A. Morrison, B. A. Smart, D. W. H. Rankin, H. E. Robertson, M. Pfeffer, W. Bodenmu1ller, R. Ruber, B. Macht, A. Ruoff and V. Typke, J. Phys. Chem. A, 1997, 101, 10029.
- 18. N. Kuş, S. Breda, I. D. Reva, E. Tasal, C. Ogretir and R. Fausto, Photochem. Photobiol., 2007, 83, 1237.
- 19. Krygowski, T. M. and Cyranski, M., 1996, Separation of the energetic and geometric contributions to the aromaticity of π-electron carbocyclics, Tetrahedron, 52, 1713-1722.
- 20. Huertas, O., Poater J., Fuentes-Cabrera, M., Orozco, M., Solà, M. and Luque, F. J., 2006, Local Aromaticity in Natural Nucleobases and Their Size-Expanded Benzo-Fused Derivatives, Journal of Physical Chemistry, A 110, 12249-12258.
- 21. Tadeusz M. Krygowski, Beata T. Stępień and Michał K. Cyrański 2005, “How the Substituent Effect Influences π-Electron Delocalisation in the Ring of Reactants in the Reaction Defining the Hammett Substituent Constants σm and σp, Int. J. Mol. Sci., 6, 45-51.
- 22. Alonso M., Miranda C., Martin N. and Herradon B. 2011, “Chemical applications of neural networks: aromaticity of pyrimidine derivatives”, Phys. Chem. Chem. Phys., 13, 20564–20574.
Year 2020,
, 120 - 129, 13.03.2020
Nihal Kuş
,
Saliha Ilıcan
References
- 1. Bhagavan N.V., Ha C.-E., in Essentials of Medical Biochemistry (Second Edition), 2015.
- 2. Lamont E. B. , Schilsky R. L. 1999, “The oral fluoropyrimidines in cancer chemotherapy”, Clin Cancer Res. 5(9):2289-96.
- 3. Rustum Y. M. 2003, “Fluoropyrimidines in Cancer Therapy”, ISBN 978-1-59259-337-8, Springer.
- 4. Titov E. V. Prikazchikova L. P. Rybchenko L. I. Cherkasov V. M. Rybachenko V. I. 1972. IR spectra of pyrimidine carboxylic acids and some problems involving their structure. Chemistry of Heterocyclic Compounds Vol: 8 (6): 754-756.
- 5. Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A. et al., gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
- 6. Raghavachari K., Binkley J. S., Seeger R., and Pople J. A. 1980, “Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions”, J. Chem. Phys., 72, 650–654
- 7. McLean A. D. and. Chandler G. S. 1980, “Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18”, J. Chem. Phys., 72, 5639–5648.
- 8. Becke A. D. 1988, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Phys. Rev. A 38, 3098–3100.
- 9. Lee C., Yang W., and Parr R. G. 1988, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B, 37, 785–789.
- 10. Vosko S. H., Wilk L., and Nusair M. 1980, “Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis”, Can. J. Phys. 58, 1200–1211.
- 11. Weinhold F., Landis C.R., Valency and Bonding. A Natural Bond Orbital Donor acceptor Perspective, Cambridge University Press, New York, 2005.
- 12. Reed A.E., Curtiss L.A., Weinhold F. 1988, “Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint”, Chem. Rev. 88, 899-926.
- 13. Lu T., Chen F. 2012, “Multiwfn: A multifunctional wavefunction analyzer”, J. Comp. Chem. 33, 580-593.
- 14. Reva I.D. and Stepanian S.G. 1995, “An infrared study on matrix-isolated benzoic acid”, J. Molec. Struct., 349, 337-340.
- 15. Kuş N., Fausto R., 2014 “Near-infrared and ultraviolet induced isomerization of crotonic acid in N2 and Xe cryomatrices: First observation of two high-energy trans C–O conformers and mechanistic insights”, J. Chem. Phys, 141, 234310.
- 16. Robert C. Hilborn 1982, “Einstein coefficients, cross sections, f values, dipole moments, and all that”, American Journal of Physics 50, 982-986.
- 17. C. A. Morrison, B. A. Smart, D. W. H. Rankin, H. E. Robertson, M. Pfeffer, W. Bodenmu1ller, R. Ruber, B. Macht, A. Ruoff and V. Typke, J. Phys. Chem. A, 1997, 101, 10029.
- 18. N. Kuş, S. Breda, I. D. Reva, E. Tasal, C. Ogretir and R. Fausto, Photochem. Photobiol., 2007, 83, 1237.
- 19. Krygowski, T. M. and Cyranski, M., 1996, Separation of the energetic and geometric contributions to the aromaticity of π-electron carbocyclics, Tetrahedron, 52, 1713-1722.
- 20. Huertas, O., Poater J., Fuentes-Cabrera, M., Orozco, M., Solà, M. and Luque, F. J., 2006, Local Aromaticity in Natural Nucleobases and Their Size-Expanded Benzo-Fused Derivatives, Journal of Physical Chemistry, A 110, 12249-12258.
- 21. Tadeusz M. Krygowski, Beata T. Stępień and Michał K. Cyrański 2005, “How the Substituent Effect Influences π-Electron Delocalisation in the Ring of Reactants in the Reaction Defining the Hammett Substituent Constants σm and σp, Int. J. Mol. Sci., 6, 45-51.
- 22. Alonso M., Miranda C., Martin N. and Herradon B. 2011, “Chemical applications of neural networks: aromaticity of pyrimidine derivatives”, Phys. Chem. Chem. Phys., 13, 20564–20574.