Research Article
BibTex RIS Cite

Finsler Manifoldunda Genel Helisler Üzerine Bir Çalışma

Year 2020, , 512 - 517, 15.06.2020
https://doi.org/10.17798/bitlisfen.592924

Abstract

Bu çalışmada, 3-boyutlu Finsler manifoldunda iki özel
eğri arasındaki ilişki üzerine çalıştık. 3-boyutlu Finsler manifoldundaki bir
regüler eğri ve bir genel helis arasındaki bir denklem kullanılarak, regüler
eğri ve genel helis mevcut ise, o zaman regüler eğrinin de bir genel helis
olduğunu gösterdik. Daha sonra bu özel eğrilerin her ikisi için de Bertrand eğri
çifti, slant helis olma koşulu verildi. Böylece 3-boyutlu Finsler manifoldunda
bu eğrilerin bazı karakterizasyonlarını elde ettik.

References

  • Matsumoto M. 1989. A Slope of a Mountain is a Finsler Surface with respect to a Time Measure, Kyoto Journal of Mathematics, 29 (1): 17-25.
  • Antonelli P.L., Ingarden R.S., Matsumoto M. 1993. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, Netherlands, 305p.
  • Bao D., Chern S.S., Shen Z. 2000. Introduction to Riemann-Finsler Geometry. Series: Graduate Texts in Mathematics 200, Springer-Verlag New York, 434p.
  • Yin Y., Zhang T., Yang F., Qiu X. 2008. Geometric Conditions for Fractal Supercarbon Nanotubes with Strict Self-Similarities Chaos Solitons and Fractals, 37: 1257-1266.
  • Jain A., Wang G., Vasquez K.M. 2008. DNA Triple Helices: Biological Consequences and Theropeutic Potential. Biochimie, 90 (8): 1117-1130.
  • Camcı Ç., İlarslan K., Kula L., Hacısalihoğlu H.H. 2009. Harmonic Curvatures and Generalized Helices in E^n, Chaos Solitons and Fractals, 4: 2590-2596.
  • Struik D.J. 1988. Lectures on Classical Differential Geometry, Dover, New York, 256p.
  • Sy S. 2001. General Helices and Other Topics in Differential Geometry of Curves, Michigan Technological University, Master Thesis of Science in Mathematics (Printed), 69p.
  • Izumiya S., Takeuchi N. 2002. Generic Properties of Helices and Bertrand Curves, Journal of Geometry, 74: 97-109.
  • Güven İ.A., Kaya S., Yaylı Y. 2010. General Helix and Associated Curve in Minkowski 3-Space, Far East Journal of Mathematical Sciences, 47 (2): 225-233.
  • Yıldırım M.Y., Bektaş M. 2009. Helices of the 3-Dimensional Finsler Manifolds, Journal of Advanced Mathematical Studies, 2 (1): 107-212.
  • Yıldırım M.Y., Bektaş M. 2011. Bertrand Curves on Finsler Break Manifolds, International Journal of Physical and Mathematical Sciences, 5-10.
  • Güven İ.A.,Yaylı Y. 2013. The Helix Relation Between Two Curves, Turkish Journal of Analysis and Number Theory, 1 (1): 23-25.
  • Bejancu A., Farran H.R. 2000. Geometry of Pseudo-Finsler Submanifold, Kluwer Academic Publishers, Dordrecht, Netherlands, 207p.
Year 2020, , 512 - 517, 15.06.2020
https://doi.org/10.17798/bitlisfen.592924

Abstract

References

  • Matsumoto M. 1989. A Slope of a Mountain is a Finsler Surface with respect to a Time Measure, Kyoto Journal of Mathematics, 29 (1): 17-25.
  • Antonelli P.L., Ingarden R.S., Matsumoto M. 1993. The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, Netherlands, 305p.
  • Bao D., Chern S.S., Shen Z. 2000. Introduction to Riemann-Finsler Geometry. Series: Graduate Texts in Mathematics 200, Springer-Verlag New York, 434p.
  • Yin Y., Zhang T., Yang F., Qiu X. 2008. Geometric Conditions for Fractal Supercarbon Nanotubes with Strict Self-Similarities Chaos Solitons and Fractals, 37: 1257-1266.
  • Jain A., Wang G., Vasquez K.M. 2008. DNA Triple Helices: Biological Consequences and Theropeutic Potential. Biochimie, 90 (8): 1117-1130.
  • Camcı Ç., İlarslan K., Kula L., Hacısalihoğlu H.H. 2009. Harmonic Curvatures and Generalized Helices in E^n, Chaos Solitons and Fractals, 4: 2590-2596.
  • Struik D.J. 1988. Lectures on Classical Differential Geometry, Dover, New York, 256p.
  • Sy S. 2001. General Helices and Other Topics in Differential Geometry of Curves, Michigan Technological University, Master Thesis of Science in Mathematics (Printed), 69p.
  • Izumiya S., Takeuchi N. 2002. Generic Properties of Helices and Bertrand Curves, Journal of Geometry, 74: 97-109.
  • Güven İ.A., Kaya S., Yaylı Y. 2010. General Helix and Associated Curve in Minkowski 3-Space, Far East Journal of Mathematical Sciences, 47 (2): 225-233.
  • Yıldırım M.Y., Bektaş M. 2009. Helices of the 3-Dimensional Finsler Manifolds, Journal of Advanced Mathematical Studies, 2 (1): 107-212.
  • Yıldırım M.Y., Bektaş M. 2011. Bertrand Curves on Finsler Break Manifolds, International Journal of Physical and Mathematical Sciences, 5-10.
  • Güven İ.A.,Yaylı Y. 2013. The Helix Relation Between Two Curves, Turkish Journal of Analysis and Number Theory, 1 (1): 23-25.
  • Bejancu A., Farran H.R. 2000. Geometry of Pseudo-Finsler Submanifold, Kluwer Academic Publishers, Dordrecht, Netherlands, 207p.
There are 14 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Muradiye Çimdiker 0000-0002-2545-5453

Yasin Ünlütürk 0000-0002-6395-5272

Publication Date June 15, 2020
Submission Date July 17, 2019
Acceptance Date December 17, 2019
Published in Issue Year 2020

Cite

IEEE M. Çimdiker and Y. Ünlütürk, “Finsler Manifoldunda Genel Helisler Üzerine Bir Çalışma”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 2, pp. 512–517, 2020, doi: 10.17798/bitlisfen.592924.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr