Research Article
BibTex RIS Cite

SHS Yöntemiyle Üretilen Cr Takviyeli Katmanlı NiAl-Ni3Al İntermetalik Bileşiğinin Mikroyapı ve Mikrosertlik Özelliklerinin Belirlenmesi

Year 2020, , 862 - 874, 15.06.2020
https://doi.org/10.17798/bitlisfen.595653

Abstract

NiAl ve Ni3Al intermetalik bileşikler
günümüzde özellikle yüksek sıcaklık uygulamalarında tercih edilen
malzemelerdir. Bu malzemelerin en büyük dezavantajı işleme ve dövme gibi
uygulamalar esnasında gevrek kırılma göstermesidir. Bu çalışmada toz
metalürjisi yöntemlerinden biri olan kendi ilerleyen yüksek sıcaklık sentezi
(self-propagating high temperature synthesis = SHS) ile krom takviyeli iki
katmandan oluşan NiAl/Ni3Al intermetalik malzemesi üretilmiştir.
Yüksek saflıktaki tozların karıştırılmasıyla elde edilen malzemeye Cr takviye
edilerek malzemenin mikroyapısına ve mikrosertliğine etkileri incelenmiştir.
Katmanlı malzemenin mikroyapı analizleri optik mikroskop ve taramalı elektron
mikroskobu (SEM) kullanılarak yapılmıştır. Ayrıca numunelerin kimyasal
kompozisyonlarının tespiti için EDX, faz bileşenlerinin tespiti için ise XRD
analizleri yapılmıştır. Yapılan analizler sonucunda SHS yöntemi kullanılarak
katmanlı ve Cr katkılı NiAl/Ni3Al intermetalik malzemelerinin
üretilebileceği görülmüştür. Ayrıca faz analizleri incelendiğinde NiAl/Ni3Al
ana fazlarının yanında Cr2Ni3 fazı da oluşmuştur.
Mikroyapı analizleri Ni3Al bölgesinde ve ara bölgede NiAl bölgesine
oranla daha fazla gözenek oluştuğu görülmüştür. Mikrosertlik ölçümlerimde ise
en yüksek sertlik Ni3Al bölgesinde en düşük sertlik ise NiAl
bölgesinde ölçülmüştür. 

Supporting Institution

TÜBİTAK

Project Number

17084648356

Thanks

Bu çalışma 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı kapsamında destek almıştır. Desteklerinden dolayı TÜBİTAK’a teşekkür ederiz.

References

  • 1. Morsi, K. (2001). reaction synthesis processing of Ni–Al intermetallic materials. Materials Science and Engineering: A, 299(1-2), 1-15.
  • 2. Stloukal, I., Čermák, J., Růžičkova, J., & Pokorna, A. (1999). Iron grain boundary diffusion in pure and in Cr, Fe and Zr-doped Ni3Al alloys. Intermetallics, 7(1), 33-38.
  • 3. Zhu, S., Bi, Q., Yang, J., & Liu, W. (2011). Influence of Cr content on tribological properties of Ni3Al matrix high temperature self-lubricating composites. Tribology International, 44(10), 1182-1187.
  • 4. Xing, Y. Y., Dai, B., Wei, X. H., Ma, Y. J., & Wang, M. (2014). Enhancement of high-temperature oxidation resistance and mechanical properties of Ni3Al thin films by inserting ultrathin Cr layers. Vacuum, 101, 107-112.
  • 5. Raju, S. V., Oni, A. A., Godwal, B. K., Yan, J., Drozd, V., Srinivasan, S., ... & Saxena, S. K. (2015). Effect of B and Cr on elastic strength and crystal structure of Ni3Al alloys under high pressure. Journal of Alloys and Compounds, 619, 616-620.
  • 6. Wu, S., Wu, X., Wang, R., Liu, Q., & Gan, L. (2014). Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl. Intermetallics, 55, 108-117.
  • 7. Sheng, L. Y., Fang, Yang., Xi, T. F., Zheng, Y. F., & Guo, J. T. (2013). Microstructure and room temperature mechanical properties of NiAl–Cr (Mo)–(Hf, Dy) hypoeutectic alloy prepared by injection casting. Transactions of Nonferrous Metals Society of China, 23(4), 983-990.
  • 8. Roy, S. K., & Biswas, A. (2001). Combustion of Powder Mixtures Forming Reaction Products-Synthesis of NiAl. Mineral Procesing and Extractive Metallurgy Review, 22(2), 567-596.
  • 9. Kaya M., Orhan N., İlyas Somunkıran İ., Bülent Kurt B. (2008). Toz Metalurjisiyle Üretilen Gözenekli NiTi Şekil Hatırlamalı Alaşımların Gözenek Karakteristikleri ve Faz Yoğunlukları Üzerinde Soğuk Presleme Basıncının Etkisi, 5th International Powder Metallury Conference, Ankara- Turkey, October 8-12.
  • 10. Varma, A., Rogachev, A. S., Mukasyan, A. S., & Hwang, S. (1998). Combustion synthesis of advanced materials: principles and applications. In advances in chemical engineering (Vol. 24, pp. 79-226). Academic Press.
  • 11. Curfs, C., Cano, I. G., Vaughan, G. B. M., Turrillas, X., Kvick, Å., & Rodriguez, M. A. (2002). TiC–NiAl composites obtained by SHS: a time-resolved XRD study. Journal of the European Ceramic Society, 22(7), 1039-1044.
  • 12. Dyer, T. S., Munir, Z. A., & Ruth, V. (1994). The combustion synthesis of multilayer NiAl systems. Scripta Metallurgica et Materialia;(United States), 30(10).
  • 13. Biswas, A., Roy, S. K., Gurumurthy, K. R., Prabhu, N., & Banerjee, S. (2002). A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode. Acta Materialia, 50(4), 757-773.
  • 14. Dong, S., Hou, P., Cheng, H., Yang, H., & Zou, G. (2002). Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure. Journal of Physics: Condensed Matter, 14(44), 11023.
  • 15. Michalski, A., Jaroszewicz, J., & Rosinski, M. (2003). The synthesis of NiAl using the pulse plasma method with the participation of the SHS reaction. International Journal of Self Propagating High Temperature Synthesis, 12(3), 237-246.
  • 16. Witczak, Z., Witczak, P., Jemielniak, R., & Mazur, A. (2004). Microstructure and mechanical properties of NiAl produced in the SHS process induced by low-temperature hydrostatic extrusion. Journal of materials science, 39(16-17), 5511-5515.
  • 17. Yeh, C. L., Su, S. H., & Chang, H. Y. (2005). Effects of TiC addition on combustion synthesis of NiAl in SHS mode. Journal of alloys and compounds, 398(1-2), 85-93.
  • 18. Veronesi, P., Leonelli, C., Poli, G., & Casagrande, A. (2008). Enhanced reactive NiAl coatings by microwave-assisted SHS. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 27(2), 491-499.
  • 19. Zhu, X., Zhang, T., Marchant, D., & Morris, V. (2011). The structure and properties of NiAl formed by SHS using induction heating. Materials Science and Engineering: A, 528(3), 1251-1260.
  • 20. Yang R., Wu Q., Li S., Gong S. 2012. Effects of Cr-Al-Si and Cr-Al coatings on the high temperature oxidation resistance of a Ni3Al-Mo based single crystal alloy, Procedia Engineering, 27 (2012) 976 – 982.
  • 21. Xing Y.Y., Dai B., Wei X.H., Ma Y.J., Wang M. 2014. Enhancement of high-temperature oxidation resistance and mechanical properties of Ni3Al thin films by inserting ultrathin Cr layers, Vacuum, 101,107 – 112.
  • 22. Zhu S., Bi Q., Yang J., Liu W. 2011. Influence of Cr content on tribological properties of Ni3Al matrix high temperature self-lubricating composites, Tribology International, 44, 1182–1187.
  • 23. Kılıç, M., Beken, M., & Özdemir, N. SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(1), 167-176.
  • 24. Çalık, A. (2009). Interface microstructure of diffusion bonded Ni3Al intermetallic alloy and austenitic stainless steel. Materials Letters, 63(28), 2462-2465.
  • 25. Čermák, J., & Rothová, V. (2001). Surface barrier for hydrogen permeability in Ni3Al—influence of Cr, Fe and Zr. Intermetallics, 9(5), 403-408.
  • 26. Moshref-Javadi, M., Edris, H., Shafyei, A., Salimi-Jazi, H., & Abdolvand, E. (2018). Evaluation of hydrogen permeation through standalone thermally sprayed coatings of AISI 316L stainless steel. International Journal of Hydrogen Energy, 43(9), 4657-4670.
  • 27. Goiri, J. G., & Van der Ven, A. (2018). Recursive alloy Hamiltonian construction and its application to the Ni-Al-Cr system. Acta Materialia, 159, 257-265.
  • 28. Liu, W., Zhang, F. L., Lu, J. F., Chen, J. H., Huang, H. P., Zhou, Y. M., & Tang, H. Q. (2018). Preparation of Ni3Al bonded diamond core drill with Ni–Cr alloy and its performance on glass–ceramic. Ceramics International, 44(18), 23080-23087.
  • 29. Al-Aql, A. A., & Al-Salhi, M. S. (2002). Precipitation in Ni—35 at. pct Cr Alloy. J.Material Science Technology, 18(1), 77-79.
  • 30. Li, L., Wang, L., Zhao, L., & Wang, X. (2018). Microstructure and adhesion strength of NiAl coating prepared on Q235 substrate by combustion synthesis assisted with Cu-Zn interlayer. Surface and Coatings Technology, 344, 564-571.
  • 31. Doğan, Ö. N., Song, X., Chen, S., & Gao, M. C. (2013). Microstructural study of high-temperature Cr–Ni–Al–Ti alloys supported by first-principles calculations. Intermetallics, 35, 33-40.
  • 32. Choe, H., & Dunand, D. C. (2004). Synthesis, structure, and mechanical properties of Ni–Al and Ni–Cr–Al superalloy foams. Acta Materialia, 52(5), 1283-1295.
  • 33. Sheng, L. Y., Xi, T. F., Chen, L. A. I., GUO, J. T., & ZHENG, Y. F. (2012). Effect of extrusion process on microstructure and mechanical properties of Ni3Al-B-Cr alloy during self-propagation high-temperature synthesis. Transactions of Nonferrous Metals Society of China, 22(3), 489-495.
  • 34. Xu, X. Y., Liu, W. J., Zhong, M. L., & Sun, H. Q. (2003). Synthesis and fabrication of WC particulate reinforced Ni 3 Al intermetallic matrix composite coating by laser powder deposition. Journal of materials science letters, 22(19), 1369-1372.
  • 35. Sadeghimeresht, E., Markocsan, N., Huhtakangas, M., & Joshi, S. (2017). Isothermal oxidation of HVAF-sprayed Ni-based chromia, alumina and mixed-oxide scale forming coatings in ambient air. Surface and Coatings Technology, 316, 10-21.
Year 2020, , 862 - 874, 15.06.2020
https://doi.org/10.17798/bitlisfen.595653

Abstract

Project Number

17084648356

References

  • 1. Morsi, K. (2001). reaction synthesis processing of Ni–Al intermetallic materials. Materials Science and Engineering: A, 299(1-2), 1-15.
  • 2. Stloukal, I., Čermák, J., Růžičkova, J., & Pokorna, A. (1999). Iron grain boundary diffusion in pure and in Cr, Fe and Zr-doped Ni3Al alloys. Intermetallics, 7(1), 33-38.
  • 3. Zhu, S., Bi, Q., Yang, J., & Liu, W. (2011). Influence of Cr content on tribological properties of Ni3Al matrix high temperature self-lubricating composites. Tribology International, 44(10), 1182-1187.
  • 4. Xing, Y. Y., Dai, B., Wei, X. H., Ma, Y. J., & Wang, M. (2014). Enhancement of high-temperature oxidation resistance and mechanical properties of Ni3Al thin films by inserting ultrathin Cr layers. Vacuum, 101, 107-112.
  • 5. Raju, S. V., Oni, A. A., Godwal, B. K., Yan, J., Drozd, V., Srinivasan, S., ... & Saxena, S. K. (2015). Effect of B and Cr on elastic strength and crystal structure of Ni3Al alloys under high pressure. Journal of Alloys and Compounds, 619, 616-620.
  • 6. Wu, S., Wu, X., Wang, R., Liu, Q., & Gan, L. (2014). Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl. Intermetallics, 55, 108-117.
  • 7. Sheng, L. Y., Fang, Yang., Xi, T. F., Zheng, Y. F., & Guo, J. T. (2013). Microstructure and room temperature mechanical properties of NiAl–Cr (Mo)–(Hf, Dy) hypoeutectic alloy prepared by injection casting. Transactions of Nonferrous Metals Society of China, 23(4), 983-990.
  • 8. Roy, S. K., & Biswas, A. (2001). Combustion of Powder Mixtures Forming Reaction Products-Synthesis of NiAl. Mineral Procesing and Extractive Metallurgy Review, 22(2), 567-596.
  • 9. Kaya M., Orhan N., İlyas Somunkıran İ., Bülent Kurt B. (2008). Toz Metalurjisiyle Üretilen Gözenekli NiTi Şekil Hatırlamalı Alaşımların Gözenek Karakteristikleri ve Faz Yoğunlukları Üzerinde Soğuk Presleme Basıncının Etkisi, 5th International Powder Metallury Conference, Ankara- Turkey, October 8-12.
  • 10. Varma, A., Rogachev, A. S., Mukasyan, A. S., & Hwang, S. (1998). Combustion synthesis of advanced materials: principles and applications. In advances in chemical engineering (Vol. 24, pp. 79-226). Academic Press.
  • 11. Curfs, C., Cano, I. G., Vaughan, G. B. M., Turrillas, X., Kvick, Å., & Rodriguez, M. A. (2002). TiC–NiAl composites obtained by SHS: a time-resolved XRD study. Journal of the European Ceramic Society, 22(7), 1039-1044.
  • 12. Dyer, T. S., Munir, Z. A., & Ruth, V. (1994). The combustion synthesis of multilayer NiAl systems. Scripta Metallurgica et Materialia;(United States), 30(10).
  • 13. Biswas, A., Roy, S. K., Gurumurthy, K. R., Prabhu, N., & Banerjee, S. (2002). A study of self-propagating high-temperature synthesis of NiAl in thermal explosion mode. Acta Materialia, 50(4), 757-773.
  • 14. Dong, S., Hou, P., Cheng, H., Yang, H., & Zou, G. (2002). Fabrication of intermetallic NiAl by self-propagating high-temperature synthesis reaction using aluminium nanopowder under high pressure. Journal of Physics: Condensed Matter, 14(44), 11023.
  • 15. Michalski, A., Jaroszewicz, J., & Rosinski, M. (2003). The synthesis of NiAl using the pulse plasma method with the participation of the SHS reaction. International Journal of Self Propagating High Temperature Synthesis, 12(3), 237-246.
  • 16. Witczak, Z., Witczak, P., Jemielniak, R., & Mazur, A. (2004). Microstructure and mechanical properties of NiAl produced in the SHS process induced by low-temperature hydrostatic extrusion. Journal of materials science, 39(16-17), 5511-5515.
  • 17. Yeh, C. L., Su, S. H., & Chang, H. Y. (2005). Effects of TiC addition on combustion synthesis of NiAl in SHS mode. Journal of alloys and compounds, 398(1-2), 85-93.
  • 18. Veronesi, P., Leonelli, C., Poli, G., & Casagrande, A. (2008). Enhanced reactive NiAl coatings by microwave-assisted SHS. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 27(2), 491-499.
  • 19. Zhu, X., Zhang, T., Marchant, D., & Morris, V. (2011). The structure and properties of NiAl formed by SHS using induction heating. Materials Science and Engineering: A, 528(3), 1251-1260.
  • 20. Yang R., Wu Q., Li S., Gong S. 2012. Effects of Cr-Al-Si and Cr-Al coatings on the high temperature oxidation resistance of a Ni3Al-Mo based single crystal alloy, Procedia Engineering, 27 (2012) 976 – 982.
  • 21. Xing Y.Y., Dai B., Wei X.H., Ma Y.J., Wang M. 2014. Enhancement of high-temperature oxidation resistance and mechanical properties of Ni3Al thin films by inserting ultrathin Cr layers, Vacuum, 101,107 – 112.
  • 22. Zhu S., Bi Q., Yang J., Liu W. 2011. Influence of Cr content on tribological properties of Ni3Al matrix high temperature self-lubricating composites, Tribology International, 44, 1182–1187.
  • 23. Kılıç, M., Beken, M., & Özdemir, N. SHS İşlemi Sonrası Sinterleme İşleminin İntermetalik Kaplamaya Etkisinin İncelenmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 31(1), 167-176.
  • 24. Çalık, A. (2009). Interface microstructure of diffusion bonded Ni3Al intermetallic alloy and austenitic stainless steel. Materials Letters, 63(28), 2462-2465.
  • 25. Čermák, J., & Rothová, V. (2001). Surface barrier for hydrogen permeability in Ni3Al—influence of Cr, Fe and Zr. Intermetallics, 9(5), 403-408.
  • 26. Moshref-Javadi, M., Edris, H., Shafyei, A., Salimi-Jazi, H., & Abdolvand, E. (2018). Evaluation of hydrogen permeation through standalone thermally sprayed coatings of AISI 316L stainless steel. International Journal of Hydrogen Energy, 43(9), 4657-4670.
  • 27. Goiri, J. G., & Van der Ven, A. (2018). Recursive alloy Hamiltonian construction and its application to the Ni-Al-Cr system. Acta Materialia, 159, 257-265.
  • 28. Liu, W., Zhang, F. L., Lu, J. F., Chen, J. H., Huang, H. P., Zhou, Y. M., & Tang, H. Q. (2018). Preparation of Ni3Al bonded diamond core drill with Ni–Cr alloy and its performance on glass–ceramic. Ceramics International, 44(18), 23080-23087.
  • 29. Al-Aql, A. A., & Al-Salhi, M. S. (2002). Precipitation in Ni—35 at. pct Cr Alloy. J.Material Science Technology, 18(1), 77-79.
  • 30. Li, L., Wang, L., Zhao, L., & Wang, X. (2018). Microstructure and adhesion strength of NiAl coating prepared on Q235 substrate by combustion synthesis assisted with Cu-Zn interlayer. Surface and Coatings Technology, 344, 564-571.
  • 31. Doğan, Ö. N., Song, X., Chen, S., & Gao, M. C. (2013). Microstructural study of high-temperature Cr–Ni–Al–Ti alloys supported by first-principles calculations. Intermetallics, 35, 33-40.
  • 32. Choe, H., & Dunand, D. C. (2004). Synthesis, structure, and mechanical properties of Ni–Al and Ni–Cr–Al superalloy foams. Acta Materialia, 52(5), 1283-1295.
  • 33. Sheng, L. Y., Xi, T. F., Chen, L. A. I., GUO, J. T., & ZHENG, Y. F. (2012). Effect of extrusion process on microstructure and mechanical properties of Ni3Al-B-Cr alloy during self-propagation high-temperature synthesis. Transactions of Nonferrous Metals Society of China, 22(3), 489-495.
  • 34. Xu, X. Y., Liu, W. J., Zhong, M. L., & Sun, H. Q. (2003). Synthesis and fabrication of WC particulate reinforced Ni 3 Al intermetallic matrix composite coating by laser powder deposition. Journal of materials science letters, 22(19), 1369-1372.
  • 35. Sadeghimeresht, E., Markocsan, N., Huhtakangas, M., & Joshi, S. (2017). Isothermal oxidation of HVAF-sprayed Ni-based chromia, alumina and mixed-oxide scale forming coatings in ambient air. Surface and Coatings Technology, 316, 10-21.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Musa Kılıç 0000-0001-5808-6917

Serkan Batı This is me 0000-0002-9313-5988

İbrahim Biliz 0000-0002-9090-4905

Fatih Demir This is me 0000-0003-3239-4641

Ayşenur Aslı Ceyhan This is me 0000-0002-6943-1250

Project Number 17084648356
Publication Date June 15, 2020
Submission Date July 27, 2019
Acceptance Date December 17, 2019
Published in Issue Year 2020

Cite

IEEE M. Kılıç, S. Batı, İ. Biliz, F. Demir, and A. A. Ceyhan, “SHS Yöntemiyle Üretilen Cr Takviyeli Katmanlı NiAl-Ni3Al İntermetalik Bileşiğinin Mikroyapı ve Mikrosertlik Özelliklerinin Belirlenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 2, pp. 862–874, 2020, doi: 10.17798/bitlisfen.595653.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS