Research Article
BibTex RIS Cite

Investigation of Crushing Behavior of Polystyrene Coated Spherical Shaped Aluminum Foams

Year 2020, , 1273 - 1281, 26.09.2020
https://doi.org/10.17798/bitlisfen.620240

Abstract

In
this study, the crushing behavior of spherically shaped aluminum foam pieces
coated with polystyrene and uncoated under compression load was investigated. The
spherical shaped aluminum foam parts produced by powder metallurgy with
diameters of 8 mm and 10 mm were coated with polystyrene by the injection
molding process. The obtained foam elements were then subject to quasi-static
compression tests at room temperature with a constant cross head speed of 1
mm/min. According to the experimental results, polystyrene coatings increased
the energy damping capacity of the foams by approximately 115% while increasing
the density by about 50%.

References

  • 1. Bafti, H.; Habibolahzadeh, A. 2013. Compressive properties of aluminum foam produced by powder-carbamide space route, Materials and Design. 52: 404-411. DOI: 10.1016/j.matdes.2013.05.043
  • 2. Jeon, I.; Asahina T. 2005. The effect of structural defects on the compressive behavior of closed-cell Al foam, Acta materialia, 53:3415-3423. DOI: 10.1016/j.actamat.2005.04.010
  • 3. Sun, D.X.; Zhao, Y.Y. 2003. Static and dynamic energy absorption of Al foams produced by a sintering and dissolution process, Metallurgical and Materials Transactions B, 34:69-74. DOI: 10.1007/s11663-003-0056-3
  • 4. Duarte, I.; Oliveira, M. 2012. Aluminium alloy foams: production and properties, In Powder metallurgy. InTech. 47-72.
  • 5. Rack, A.; Helwig, H.M.; Bütow, A.; Rueda, A.; Matijasevic-Lux, B.B.; Helfen, L.; Goebbelse, J.; Banhart J. 2009. Earlypore formation in aluminium foams studied by synchrotron-based microto-mography and 3-D image analysis, Acta Materialia, 57:4809-4821. DOI: 10.1016/j.actamat.2009.06.045
  • 6. Mukherjee, M.; Garcia-Moreno, F.; Banhart J. 2010. Solidification of metal foams, Acta Materialia, 58:6358-6370.DOI: 10.1016/j.actamat.2010.07.057
  • 7. Duarte, I.; Banhart J. 2000. A study of aluminium foam formation-kinetics and microstructure, Acta materialia, 48:2349-2362. DOI: 10.1016/S1359-6454(00)00020-3
  • 8. Koizumi, T.; Kido, K.; Kita, K.; Mikado, K.; Gnyloskurenko, S.; Nakamura T. 2011. Foaming agents of powder metallurgy production of aluminum foam, Materials transactions, 52:728-733. DOI: 10.2320/matertrans.M2010401
  • 9. Stöbener, K.; Baumeister, J.; Rausch, G.; Rausch, M. 2005. Forming metal foams by simpler methods for cheaper solutions, Metal Powder Report, 60:12-16. DOI: 10.1016/S0026-0657(05)00316-4
  • 10. Stöbener, K.; Lehmhus, D.; Avalle, M.; Peroni, L.; Busse, M. 2008. Aluminum foam-polymer hybrid structures (APM aluminum foam) in compression testing, International Journal of Solids and Structures, 45:5627-5641. DOI: 10.1016/j.ijsolstr.2008.06.007
  • 11. Vesenjak, M.; Borovinšek, M.; Fiedler, T.; Higa, Y.; Ren Z. 2013. Structural characterisation of advanced pore morphology (APM) foam elements, Materials Letters, 110:201-203. DOI: 10.1016/j.matlet.2013.08.026
  • 12. Vesenjak, M.; Gačnik, F.; Krstulović-Opara, L.; Ren, Z. 2011. Behavior of composite advanced pore morphology foam, Journal of Composite Materials, 45:2823-2831. DOI: 10.1177/0021998311410489
  • 13. Ulbin, M.; Borovinšek, M.; Higa, Y.; Shimojima, K.; Vesenjak, M.; Ren, Z. 2014. Internal structure characterization of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements, Materials Letters, 136:416-419. DOI: 10.1016/j.matlet.2014.08.056
  • 14. Fiedler, T.; Sulong, M. A.; Vesenjak, M.; Higa, Y.; Belova, I. V.; Oechsner, A.; Murch, G. E. 2014. Determination of the thermal conductivity of periodic APM foam models, International Journal of Heat and Mass Transfer, 73:826-833. DOI: 10.1016/j.ijheatmasstransfer.2014.02.056
  • 15. Vesenjak, M.; Gačnik, F.; Krstulović-Opara, L.; Ren, Z. 2015. Mechanical properties of advanced pore morphology foam elements, Mechanics of Advanced Materials and Structures, 22:359-366 DOI: 10.1080/15376494.2012.736059
  • 16. Lehmhus, D.; Baumeister, J.; Stutz, L.; Schneider, E.; Stöbener, K.; Avalle, M.; Peroni, L.; Peron M. 2010. Mechanical characterization of particulate aluminum foams strain‐rate, density and matrix alloy versus adhesive effects, Advanced Engineering Materials, 12:596-603. DOI: 10.1002/adem.200900315
  • 17. Banhart, J. 2001. Manufacture, characterization and application of cellular metals and metal foams, Progress in Materials Science, 46:559-632. DOI: 10.1016/S0079-6425(00)00002-5
  • 18. Marsh, K.; Bugusu, B. 2007. Food packaging roles, materials, and environmental issues, Journal of Food Science, 72/3:39-55. DOI: 10.1111/j.1750-3841.2007.00301.x
  • 19. Mbadike, E.M.; Osadebe, N.N. 2012. Effect of incorporating expanded polystyrene aggregate granules in concrete matrix. Nigerian Journal of Technology, 31:401-404.
  • 20. Kuhail, Z.; Shihada S. 2003. Mechanical properties of polystyrene light weight concrete, Journal of the Islamic University of Gaza, 11:93–114.
  • 21. Chaukura, N.; Gwenzi, W.; Bunhu, T.; Ruziwa, D. T.; Pumure, I. 2016. Potential uses and value-added products derived from waste polystyrene in developing countries: A Review, Resources Conservation and Recycling, 107:157-165. DOI: 10.1016/j.resconrec.2015.10.031
  • 22. Uzun, A.; Turker M. 2015. The investigation of mechanical properties of B4C-reinforced AlSi7 foams, International Journal of Materials Research, 106:970-977. DOI: 10.3139/146.111257
  • 23. Sulong, M. A.; Vesenjak, M.; Belova, I. V.; Murch, G. E.; Fiedler T. 2014. Compressive properties of Advanced Pore Morphology (APM) foam elements. Materials Science and Engineering A, 607:498-504. DOI: 10.1016/j.msea.2014.04.037
  • 24. Jeenager, V. K.; Pancholi, V. 2014. Influence of cell wall microstructure on the energy absorption capability of aluminium foam, Materials and Design. 56:454-459. DOI: 10.1016/j.matdes.2013.08.109
  • 25. Guo, C.; Zou, T.; Shi, C.; Yang, X.; Zhao, N.; Liu, E.; He, C. 2015. Compressive properties and energy absorption of aluminum composite foams reinforced by in-situ generated MgAl2O4 whiskers, Materials Science and Engineering A, 645:1-7. DOI: 10.1016/j.msea.2015.07.091

Polistiren Kaplı Küresel Şekilli Alüminyum Köpüklerin Ezilme Davranışlarının Araştırılması

Year 2020, , 1273 - 1281, 26.09.2020
https://doi.org/10.17798/bitlisfen.620240

Abstract

Bu çalışmada, polistiren ile kaplanmış ve kaplanmamış
küresel şekilli alüminyum köpük parçaların sıkıştırma yükü altındaki ezilme
davranışları incelenmiştir. Toz metalurjisi yöntemi ile üretilen 8 mm ve 10 mm
çaplarındaki küresel şekilli alüminyum köpük parçalar enjeksiyon kalıplama
işlemiyle polistiren ile kaplanmıştır. Üretilen köpükler daha sonra 1 mm/dak deformasyon
hızında oda sıcaklığında yarı-statik sıkıştırma testlerine tabi tutulmuştur.
Elde edilen deneysel sonuçlara göre, polistiren kaplamalar köpüklerin enerji
sönümleme kapasitelerini yaklaşık % 115 arttırırken, yoğunluğu da yaklaşık % 50
oranında arttırmıştır.

References

  • 1. Bafti, H.; Habibolahzadeh, A. 2013. Compressive properties of aluminum foam produced by powder-carbamide space route, Materials and Design. 52: 404-411. DOI: 10.1016/j.matdes.2013.05.043
  • 2. Jeon, I.; Asahina T. 2005. The effect of structural defects on the compressive behavior of closed-cell Al foam, Acta materialia, 53:3415-3423. DOI: 10.1016/j.actamat.2005.04.010
  • 3. Sun, D.X.; Zhao, Y.Y. 2003. Static and dynamic energy absorption of Al foams produced by a sintering and dissolution process, Metallurgical and Materials Transactions B, 34:69-74. DOI: 10.1007/s11663-003-0056-3
  • 4. Duarte, I.; Oliveira, M. 2012. Aluminium alloy foams: production and properties, In Powder metallurgy. InTech. 47-72.
  • 5. Rack, A.; Helwig, H.M.; Bütow, A.; Rueda, A.; Matijasevic-Lux, B.B.; Helfen, L.; Goebbelse, J.; Banhart J. 2009. Earlypore formation in aluminium foams studied by synchrotron-based microto-mography and 3-D image analysis, Acta Materialia, 57:4809-4821. DOI: 10.1016/j.actamat.2009.06.045
  • 6. Mukherjee, M.; Garcia-Moreno, F.; Banhart J. 2010. Solidification of metal foams, Acta Materialia, 58:6358-6370.DOI: 10.1016/j.actamat.2010.07.057
  • 7. Duarte, I.; Banhart J. 2000. A study of aluminium foam formation-kinetics and microstructure, Acta materialia, 48:2349-2362. DOI: 10.1016/S1359-6454(00)00020-3
  • 8. Koizumi, T.; Kido, K.; Kita, K.; Mikado, K.; Gnyloskurenko, S.; Nakamura T. 2011. Foaming agents of powder metallurgy production of aluminum foam, Materials transactions, 52:728-733. DOI: 10.2320/matertrans.M2010401
  • 9. Stöbener, K.; Baumeister, J.; Rausch, G.; Rausch, M. 2005. Forming metal foams by simpler methods for cheaper solutions, Metal Powder Report, 60:12-16. DOI: 10.1016/S0026-0657(05)00316-4
  • 10. Stöbener, K.; Lehmhus, D.; Avalle, M.; Peroni, L.; Busse, M. 2008. Aluminum foam-polymer hybrid structures (APM aluminum foam) in compression testing, International Journal of Solids and Structures, 45:5627-5641. DOI: 10.1016/j.ijsolstr.2008.06.007
  • 11. Vesenjak, M.; Borovinšek, M.; Fiedler, T.; Higa, Y.; Ren Z. 2013. Structural characterisation of advanced pore morphology (APM) foam elements, Materials Letters, 110:201-203. DOI: 10.1016/j.matlet.2013.08.026
  • 12. Vesenjak, M.; Gačnik, F.; Krstulović-Opara, L.; Ren, Z. 2011. Behavior of composite advanced pore morphology foam, Journal of Composite Materials, 45:2823-2831. DOI: 10.1177/0021998311410489
  • 13. Ulbin, M.; Borovinšek, M.; Higa, Y.; Shimojima, K.; Vesenjak, M.; Ren, Z. 2014. Internal structure characterization of AlSi7 and AlSi10 advanced pore morphology (APM) foam elements, Materials Letters, 136:416-419. DOI: 10.1016/j.matlet.2014.08.056
  • 14. Fiedler, T.; Sulong, M. A.; Vesenjak, M.; Higa, Y.; Belova, I. V.; Oechsner, A.; Murch, G. E. 2014. Determination of the thermal conductivity of periodic APM foam models, International Journal of Heat and Mass Transfer, 73:826-833. DOI: 10.1016/j.ijheatmasstransfer.2014.02.056
  • 15. Vesenjak, M.; Gačnik, F.; Krstulović-Opara, L.; Ren, Z. 2015. Mechanical properties of advanced pore morphology foam elements, Mechanics of Advanced Materials and Structures, 22:359-366 DOI: 10.1080/15376494.2012.736059
  • 16. Lehmhus, D.; Baumeister, J.; Stutz, L.; Schneider, E.; Stöbener, K.; Avalle, M.; Peroni, L.; Peron M. 2010. Mechanical characterization of particulate aluminum foams strain‐rate, density and matrix alloy versus adhesive effects, Advanced Engineering Materials, 12:596-603. DOI: 10.1002/adem.200900315
  • 17. Banhart, J. 2001. Manufacture, characterization and application of cellular metals and metal foams, Progress in Materials Science, 46:559-632. DOI: 10.1016/S0079-6425(00)00002-5
  • 18. Marsh, K.; Bugusu, B. 2007. Food packaging roles, materials, and environmental issues, Journal of Food Science, 72/3:39-55. DOI: 10.1111/j.1750-3841.2007.00301.x
  • 19. Mbadike, E.M.; Osadebe, N.N. 2012. Effect of incorporating expanded polystyrene aggregate granules in concrete matrix. Nigerian Journal of Technology, 31:401-404.
  • 20. Kuhail, Z.; Shihada S. 2003. Mechanical properties of polystyrene light weight concrete, Journal of the Islamic University of Gaza, 11:93–114.
  • 21. Chaukura, N.; Gwenzi, W.; Bunhu, T.; Ruziwa, D. T.; Pumure, I. 2016. Potential uses and value-added products derived from waste polystyrene in developing countries: A Review, Resources Conservation and Recycling, 107:157-165. DOI: 10.1016/j.resconrec.2015.10.031
  • 22. Uzun, A.; Turker M. 2015. The investigation of mechanical properties of B4C-reinforced AlSi7 foams, International Journal of Materials Research, 106:970-977. DOI: 10.3139/146.111257
  • 23. Sulong, M. A.; Vesenjak, M.; Belova, I. V.; Murch, G. E.; Fiedler T. 2014. Compressive properties of Advanced Pore Morphology (APM) foam elements. Materials Science and Engineering A, 607:498-504. DOI: 10.1016/j.msea.2014.04.037
  • 24. Jeenager, V. K.; Pancholi, V. 2014. Influence of cell wall microstructure on the energy absorption capability of aluminium foam, Materials and Design. 56:454-459. DOI: 10.1016/j.matdes.2013.08.109
  • 25. Guo, C.; Zou, T.; Shi, C.; Yang, X.; Zhao, N.; Liu, E.; He, C. 2015. Compressive properties and energy absorption of aluminum composite foams reinforced by in-situ generated MgAl2O4 whiskers, Materials Science and Engineering A, 645:1-7. DOI: 10.1016/j.msea.2015.07.091
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Arif Uzun 0000-0002-8120-4114

Publication Date September 26, 2020
Submission Date September 13, 2019
Acceptance Date September 16, 2020
Published in Issue Year 2020

Cite

IEEE A. Uzun, “Investigation of Crushing Behavior of Polystyrene Coated Spherical Shaped Aluminum Foams”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 3, pp. 1273–1281, 2020, doi: 10.17798/bitlisfen.620240.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS