Research Article
BibTex RIS Cite

Fenol Çözeltisinin Farklı Elektrotlar Kullanılarak Elektrooksidasyonu

Year 2020, , 952 - 957, 15.06.2020
https://doi.org/10.17798/bitlisfen.623125

Abstract

Bu çalışmada toksik aromatik bir bileşik olarak bilinen fenolün BDD (Boron Doped Diamond), Ti/Pt ve MMO (Mixed Metal Oksit) elektrotları (Ti/RuO2-TiO2, Ti/RuO2-IrO2, Ti/IrO2-Ta2O5, Ti/Pt-IrO2) ile mineralizasyonu araştırıldı. Mineralizasyon seviyesinin belirlenmesi amacıyla deneylerin başında ve ilerleyen sürelerinde elektrooksidasyona tabi tutulan fenol çözeltisinden örnekler alınıp TOK (Toplam Organik Karbon) değerleri ölçüldü. Akım yoğunluğunun giderme verimine etkisini araştırmak için ise reaktöre üç farklı akım yoğunluğu (25 mA/cm2, 75 mA/cm2 ve 125 mA/cm2uygulandı. Akım yoğunluğu artışı ile mineralizasyon veriminin artığı görülürdğ. 125 mA/cm2 akım yoğunluğunda BDD anot 180. dakikadan itibaren %100 giderme verimlerine ulaştı.  Deneyin başında düşük performans gösteren Pt elektrotun 300 dakikalık deney süresi sonunda % 84 lük giderme verimi ile, % 72-79 aralığında verim gösteren MMO anotların performansını geçtiği belirlendi. Çalışmanın sonunda BDD elektrodun fenolün sulardan gideriminde diğer anotlardan daha iyi performans gösterdiği görüldü.

References

  • [1] J. Iniesta, J. González-Garcı́a, E. Expósito, V. Montiel, and A. Aldaz, “Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes,” Water Res., vol. 35, no. 14, pp. 3291–3300, 2001.
  • [2] Y. M. Awad and N. S. Abuzaid, “The influence of residence time on the anodic oxidation of phenol,” Sep. Purif. Technol., vol. 18, no. 3, pp. 227–236, 2000.
  • [3] X. Li, Y. Cui, Y. Feng, Z. Xie, and J.-D. Gu, “Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes,” Water Res., vol. 39, no. 10, pp. 1972–1981, 2005.
  • [4] Y. Yavuz and A. S. Koparal, “Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode,” J. Hazard. Mater., vol. 136, no. 2, pp. 296–302, 2006.
  • [5] X. Yang, R. Zou, F. Huo, D. Cai, and D. Xiao, “Preparation and characterization of Ti/SnO2–Sb2O3–Nb2O5/PbO2 thin film as electrode material for the degradation of phenol,” J. Hazard. Mater., vol. 164, no. 1, pp. 367–373, 2009.
  • [6] M. Li, C. Feng, W. Hu, Z. Zhang, and N. Sugiura, “Electrochemical degradation of phenol using electrodes of Ti/RuO2–Pt and Ti/IrO2–Pt,” J. Hazard. Mater., vol. 162, no. 1, pp. 455–462, 2009.
  • [7] K. Verschueren, Handbook of Environmental Data on Organic Chemicals. Wiley, 1977.
  • [8] N. S. Abuzaid and G. F. Nakhla, “Effect of solution pH on the kinetics of phenolics uptake on granular activated carbon,” J. Hazard. Mater., vol. 49, no. 2, pp. 217–230, 1996.
  • [9] G. F. Nakhla and I. M. Al‐Harazin, “Simplified analysis of biodegradation kinetics of phenolic compounds by heterogeneous cultures,” Environ. Technol., vol. 14, no. 8, pp. 751–760, Aug. 1993.
  • [10] C.-H. Chiou and R.-S. Juang, “Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles,” J. Hazard. Mater., vol. 149, no. 1, pp. 1–7, 2007.
  • [11] C. Adán, A. Bahamonde, M. Fernández-García, and A. Martínez-Arias, “Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation,” Appl. Catal. B Environ., vol. 72, no. 1, pp. 11–17, 2007.
  • [12] M. A. Barakat, J. M. Tseng, and C. P. Huang, “Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds,” Appl. Catal. B Environ., vol. 59, no. 1, pp. 99–104, 2005.
  • [13] Y. Matsumura, T. Nunoura, T. Urase, and K. Yamamoto, “Supercritical water oxidation of high concentrations of phenol,” J. Hazard. Mater., vol. 73, no. 3, pp. 245–254, 2000.
  • [14] H. Nakui, K. Okitsu, Y. Maeda, and R. Nishimura, “Effect of coal ash on sonochemical degradation of phenol in water,” Ultrason. Sonochem., vol. 14, no. 2, pp. 191–196, 2007.
  • [15] O. T. Can, “Removal of TOC from fertilizer production wastewater by electrooxidation,” Desalin. Water Treat., vol. 53, no. 4, 2015.
  • [16] C. A. Martínez-Huitle and E. Brillas, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review,” Appl. Catal. B Environ., vol. 87, no. 3, pp. 105–145, 2009.
  • [17] A. M. Polcaro, A. Vacca, S. Palmas, and M. Mascia, “Electrochemical treatment of wastewater containing phenolic compounds: oxidation at boron-doped diamond electrodes,” J. Appl. Electrochem., vol. 33, no. 10, pp. 885–892, 2003.
  • [18] M. Zhou, H. Särkkä, and M. Sillanpää, “A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes,” Sep. Purif. Technol., vol. 78, no. 3, pp. 290–297, 2011.
  • [19] O. Simond, V. Schaller, and C. Comninellis, “Theoretical model for the anodic oxidation of organics on metal oxide electrodes,” Electrochim. Acta, vol. 42, no. 13, pp. 2009–2012, 1997.
  • [20] M. Panizza and G. Cerisola, “Direct And Mediated Anodic Oxidation of Organic Pollutants,” Chem. Rev., vol. 109, no. 12, pp. 6541–6569, Dec. 2009.
  • [21] C. Comninellis, “Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment,” Electrochim. Acta, vol. 39, no. 11, pp. 1857–1862, 1994.
Year 2020, , 952 - 957, 15.06.2020
https://doi.org/10.17798/bitlisfen.623125

Abstract

References

  • [1] J. Iniesta, J. González-Garcı́a, E. Expósito, V. Montiel, and A. Aldaz, “Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure PbO2 anodes,” Water Res., vol. 35, no. 14, pp. 3291–3300, 2001.
  • [2] Y. M. Awad and N. S. Abuzaid, “The influence of residence time on the anodic oxidation of phenol,” Sep. Purif. Technol., vol. 18, no. 3, pp. 227–236, 2000.
  • [3] X. Li, Y. Cui, Y. Feng, Z. Xie, and J.-D. Gu, “Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes,” Water Res., vol. 39, no. 10, pp. 1972–1981, 2005.
  • [4] Y. Yavuz and A. S. Koparal, “Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode,” J. Hazard. Mater., vol. 136, no. 2, pp. 296–302, 2006.
  • [5] X. Yang, R. Zou, F. Huo, D. Cai, and D. Xiao, “Preparation and characterization of Ti/SnO2–Sb2O3–Nb2O5/PbO2 thin film as electrode material for the degradation of phenol,” J. Hazard. Mater., vol. 164, no. 1, pp. 367–373, 2009.
  • [6] M. Li, C. Feng, W. Hu, Z. Zhang, and N. Sugiura, “Electrochemical degradation of phenol using electrodes of Ti/RuO2–Pt and Ti/IrO2–Pt,” J. Hazard. Mater., vol. 162, no. 1, pp. 455–462, 2009.
  • [7] K. Verschueren, Handbook of Environmental Data on Organic Chemicals. Wiley, 1977.
  • [8] N. S. Abuzaid and G. F. Nakhla, “Effect of solution pH on the kinetics of phenolics uptake on granular activated carbon,” J. Hazard. Mater., vol. 49, no. 2, pp. 217–230, 1996.
  • [9] G. F. Nakhla and I. M. Al‐Harazin, “Simplified analysis of biodegradation kinetics of phenolic compounds by heterogeneous cultures,” Environ. Technol., vol. 14, no. 8, pp. 751–760, Aug. 1993.
  • [10] C.-H. Chiou and R.-S. Juang, “Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles,” J. Hazard. Mater., vol. 149, no. 1, pp. 1–7, 2007.
  • [11] C. Adán, A. Bahamonde, M. Fernández-García, and A. Martínez-Arias, “Structure and activity of nanosized iron-doped anatase TiO2 catalysts for phenol photocatalytic degradation,” Appl. Catal. B Environ., vol. 72, no. 1, pp. 11–17, 2007.
  • [12] M. A. Barakat, J. M. Tseng, and C. P. Huang, “Hydrogen peroxide-assisted photocatalytic oxidation of phenolic compounds,” Appl. Catal. B Environ., vol. 59, no. 1, pp. 99–104, 2005.
  • [13] Y. Matsumura, T. Nunoura, T. Urase, and K. Yamamoto, “Supercritical water oxidation of high concentrations of phenol,” J. Hazard. Mater., vol. 73, no. 3, pp. 245–254, 2000.
  • [14] H. Nakui, K. Okitsu, Y. Maeda, and R. Nishimura, “Effect of coal ash on sonochemical degradation of phenol in water,” Ultrason. Sonochem., vol. 14, no. 2, pp. 191–196, 2007.
  • [15] O. T. Can, “Removal of TOC from fertilizer production wastewater by electrooxidation,” Desalin. Water Treat., vol. 53, no. 4, 2015.
  • [16] C. A. Martínez-Huitle and E. Brillas, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review,” Appl. Catal. B Environ., vol. 87, no. 3, pp. 105–145, 2009.
  • [17] A. M. Polcaro, A. Vacca, S. Palmas, and M. Mascia, “Electrochemical treatment of wastewater containing phenolic compounds: oxidation at boron-doped diamond electrodes,” J. Appl. Electrochem., vol. 33, no. 10, pp. 885–892, 2003.
  • [18] M. Zhou, H. Särkkä, and M. Sillanpää, “A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes,” Sep. Purif. Technol., vol. 78, no. 3, pp. 290–297, 2011.
  • [19] O. Simond, V. Schaller, and C. Comninellis, “Theoretical model for the anodic oxidation of organics on metal oxide electrodes,” Electrochim. Acta, vol. 42, no. 13, pp. 2009–2012, 1997.
  • [20] M. Panizza and G. Cerisola, “Direct And Mediated Anodic Oxidation of Organic Pollutants,” Chem. Rev., vol. 109, no. 12, pp. 6541–6569, Dec. 2009.
  • [21] C. Comninellis, “Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment,” Electrochim. Acta, vol. 39, no. 11, pp. 1857–1862, 1994.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Orhan Taner Can 0000-0003-3386-975X

Publication Date June 15, 2020
Submission Date September 22, 2019
Acceptance Date February 11, 2020
Published in Issue Year 2020

Cite

IEEE O. T. Can, “Fenol Çözeltisinin Farklı Elektrotlar Kullanılarak Elektrooksidasyonu”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 2, pp. 952–957, 2020, doi: 10.17798/bitlisfen.623125.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS