Beton Ağırlıklı Barajların Simbiyotik Arama Algoritması ile Optimizasyonu
Year 2020,
, 1734 - 1744, 25.12.2020
Kemal Saplıoğlu
,
Erdem Çoban
,
Fatih Ahmet Şenel
,
Soner Uzundurukan
Abstract
Artan nüfus ve sanayileşme suya olan ihtiyacı hıza arttırmaktadır. Bu artış projelerin boyutlarını da arttırmaktadır. Klasik yöntemlerle yapılan projelendirmelerde maliyetler oldukça yüksek çıkabilmektedir. Bu çalışmada su kaynakları projelerinin en önemlilerinden olan beton ağırlıklı barajların Simbiyotik Arama Algoritması (SOS) kullanılarak optimum boyutlarının bulunması amaçlanmıştır. Çalışmada baraj yükseklikleri ve deprem ivmeleri değişimi ile maliyet artışları da ve bu artışların oranları hesaplanmıştır. Elde edilen sonuçlar grafikler ve tablolar ile düzenlenmiştir. Ayrıca çalışmada her girdi parametresi için modelleme yapabilecek bir programda geliştirilmiştir.
References
- 1. Datta B., Chakrabarty D., Dhar A. 2011. Identification of unknown groundwater pollution sources using classical optimization with linked simulation. Journal of Hydro-Environment Research, 5(1), 25-36.
- 2. Anile A. M., Cutello V., Nicosia G., Rascuna, R., Spinella S. 2005, September. Comparison among evolutionary algorithms and classical optimization methods for circuit design problems. In 2005 IEEE Congress on Evolutionary Computation Vol. 1, pp. 765-772. IEEE.
- 3. Saplıoğlu K., Uzundurukan S. Bilimsel çalışmalarda kullanılan bazı yapay zeka uygulamalarının ve trendlerinin incelenmesi. DÜMF Mühendislik Dergisi, 10(1), 249-262.
- 4. Geem Z. W. 2007, June. Optimal scheduling of multiple dam system using harmony search algorithm. In International Work-Conference on Artificial Neural Networks pp. 316-323. Springer, Berlin, Heidelberg.
- 5. Banos R., Manzano-Agugliaro F., Montoya F. G., Gil C., Alcayde, A., Gómez, J. 2011. Optimization methods applied to renewable and sustainable energy: A review. Renewable and sustainable energy reviews, 15(4), 1753-1766.
- 6. Khatibinia M., Khosravi S. 2014. A hybrid approach based on an improved gravitational search algorithm and orthogonal crossover for optimal shape design of concrete gravity dams. Applied Soft Computing, 16, 223-233.
- 7. Kshirsagar D. Y. 2014. Effect of variation of earthquake intensity on stability of gravity dam. J Indian Water Resour Soc, 34(3), 1-6.
- 8. Salmasi F. 2011. Design of gravity dam by genetic algorithms. International Journal of Civil and Environmental Engineering, 3(3), 187-192.
- 9. Deepika R., Suribabu C. R. 2015. Optimal design of gravity dam using differential evolution algorithm. Iran University of Science Technology, 5(3), 255-266.
- 10. Seyedpoor S. M., Salajegheh J., Salajegheh E. 2012. Shape optimal design of materially nonlinear arch dams including dam-water-foundation rock interaction using an improved PSO algorithm. Optimization and engineering, 13(1), 79-100.
- 11. Seyedpoor S. M., Salajegheh J., Salajegheh E., Gholizadeh S. 2011. Optimal design of arch dams subjected to earthquake loading by a combination of simultaneous perturbation stochastic approximation and particle swarm algorithms. Applied Soft Computing, 11(1), 39-48.
- 12. Akbari J., Ahmadi, M. T., Moharrami H. 2011. Advances in concrete arch dams shape optimization. Applied Mathematical Modelling, 35(7), 3316-3333.
- 13. Hamidian D., Seyedpoor S. M. 2010. Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization. Applied Mathematical Modelling, 34(6), 1574-1585.
- 14. Seyedpoor S. M., Salajegheh J., Salajegheh E., Gholizadeh S. 2009. Optimum shape design of arch dams for earthquake loading using a fuzzy inference system and wavelet neural networks. Engineering optimization, 41(5), 473-493.
- 15. Wang L., Zeng J., Xu L. 2011. A decision support system for substage-zoning filling design of rock-fill dams based on particle swarm optimization. Information Technology and Management, 12(2), 111.
- 16. Akbari J., Ahmadi M. T., Moharrami H. 2011. Advances in concrete arch dams shape optimization. Applied Mathematical Modelling, 35(7), 3316-3333.
- 17. Deepika R., Suribabu C. R. 2015. Optimal design of gravity dam using differential evolution algorithm. Iran University of Science Technology, 5(3), 255-266.
- 18. Chopra A. K. 1978. Earthquake resistant design of concrete gravity dams. Journal of the Structural Division, 104(6), 953-971.
- 19. Ozdemir G, Aydemir E, Olgun M O, Mulbay Z, 2016. Forecasting of Turkey Natural Gas Demand Using a Hybrid Algorithm. Energy Sources Part B- Economics Planning and Policy, 11(4): 295-302.
- 20. Çatal Y, Saplıoğlu K, 2018. Comparison of Adaptive Neuro-Fuzzy Inference System, Artifıcial Neural Networks and Non-Linear Regression for Bark Volume Estimation in Brutian Pine Pinus brutia ten.) Applied Ecology and Environmental Research, 16(2):2015-2027.
- 21. Cheng M, Prayogo D, 2014. Symbiotic Organisms Search: A New Metaheuristic Optimization Algorithm. Computers and Structures, 139:98-112.
- 22. Çelik E, Öztürk N, 2017. Doğru Akım Motor Sürücüleri için PI Parametrelerinin Simbiyotik Organizmalar Arama Algoritması ile Optimal Ayarı. Bilişim Teknolojileri Dergisi, 10(3):311-318.
- 23. Baysal Y A, Altas I H, 2017. Power Quality Improvement via Optimal Capacitor Placement in Electrical Distribution Systems using Symbiotic Organisms Search Algorithm. Mugla Journal of Science and Technology, 3(1):64-68.
Year 2020,
, 1734 - 1744, 25.12.2020
Kemal Saplıoğlu
,
Erdem Çoban
,
Fatih Ahmet Şenel
,
Soner Uzundurukan
References
- 1. Datta B., Chakrabarty D., Dhar A. 2011. Identification of unknown groundwater pollution sources using classical optimization with linked simulation. Journal of Hydro-Environment Research, 5(1), 25-36.
- 2. Anile A. M., Cutello V., Nicosia G., Rascuna, R., Spinella S. 2005, September. Comparison among evolutionary algorithms and classical optimization methods for circuit design problems. In 2005 IEEE Congress on Evolutionary Computation Vol. 1, pp. 765-772. IEEE.
- 3. Saplıoğlu K., Uzundurukan S. Bilimsel çalışmalarda kullanılan bazı yapay zeka uygulamalarının ve trendlerinin incelenmesi. DÜMF Mühendislik Dergisi, 10(1), 249-262.
- 4. Geem Z. W. 2007, June. Optimal scheduling of multiple dam system using harmony search algorithm. In International Work-Conference on Artificial Neural Networks pp. 316-323. Springer, Berlin, Heidelberg.
- 5. Banos R., Manzano-Agugliaro F., Montoya F. G., Gil C., Alcayde, A., Gómez, J. 2011. Optimization methods applied to renewable and sustainable energy: A review. Renewable and sustainable energy reviews, 15(4), 1753-1766.
- 6. Khatibinia M., Khosravi S. 2014. A hybrid approach based on an improved gravitational search algorithm and orthogonal crossover for optimal shape design of concrete gravity dams. Applied Soft Computing, 16, 223-233.
- 7. Kshirsagar D. Y. 2014. Effect of variation of earthquake intensity on stability of gravity dam. J Indian Water Resour Soc, 34(3), 1-6.
- 8. Salmasi F. 2011. Design of gravity dam by genetic algorithms. International Journal of Civil and Environmental Engineering, 3(3), 187-192.
- 9. Deepika R., Suribabu C. R. 2015. Optimal design of gravity dam using differential evolution algorithm. Iran University of Science Technology, 5(3), 255-266.
- 10. Seyedpoor S. M., Salajegheh J., Salajegheh E. 2012. Shape optimal design of materially nonlinear arch dams including dam-water-foundation rock interaction using an improved PSO algorithm. Optimization and engineering, 13(1), 79-100.
- 11. Seyedpoor S. M., Salajegheh J., Salajegheh E., Gholizadeh S. 2011. Optimal design of arch dams subjected to earthquake loading by a combination of simultaneous perturbation stochastic approximation and particle swarm algorithms. Applied Soft Computing, 11(1), 39-48.
- 12. Akbari J., Ahmadi, M. T., Moharrami H. 2011. Advances in concrete arch dams shape optimization. Applied Mathematical Modelling, 35(7), 3316-3333.
- 13. Hamidian D., Seyedpoor S. M. 2010. Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization. Applied Mathematical Modelling, 34(6), 1574-1585.
- 14. Seyedpoor S. M., Salajegheh J., Salajegheh E., Gholizadeh S. 2009. Optimum shape design of arch dams for earthquake loading using a fuzzy inference system and wavelet neural networks. Engineering optimization, 41(5), 473-493.
- 15. Wang L., Zeng J., Xu L. 2011. A decision support system for substage-zoning filling design of rock-fill dams based on particle swarm optimization. Information Technology and Management, 12(2), 111.
- 16. Akbari J., Ahmadi M. T., Moharrami H. 2011. Advances in concrete arch dams shape optimization. Applied Mathematical Modelling, 35(7), 3316-3333.
- 17. Deepika R., Suribabu C. R. 2015. Optimal design of gravity dam using differential evolution algorithm. Iran University of Science Technology, 5(3), 255-266.
- 18. Chopra A. K. 1978. Earthquake resistant design of concrete gravity dams. Journal of the Structural Division, 104(6), 953-971.
- 19. Ozdemir G, Aydemir E, Olgun M O, Mulbay Z, 2016. Forecasting of Turkey Natural Gas Demand Using a Hybrid Algorithm. Energy Sources Part B- Economics Planning and Policy, 11(4): 295-302.
- 20. Çatal Y, Saplıoğlu K, 2018. Comparison of Adaptive Neuro-Fuzzy Inference System, Artifıcial Neural Networks and Non-Linear Regression for Bark Volume Estimation in Brutian Pine Pinus brutia ten.) Applied Ecology and Environmental Research, 16(2):2015-2027.
- 21. Cheng M, Prayogo D, 2014. Symbiotic Organisms Search: A New Metaheuristic Optimization Algorithm. Computers and Structures, 139:98-112.
- 22. Çelik E, Öztürk N, 2017. Doğru Akım Motor Sürücüleri için PI Parametrelerinin Simbiyotik Organizmalar Arama Algoritması ile Optimal Ayarı. Bilişim Teknolojileri Dergisi, 10(3):311-318.
- 23. Baysal Y A, Altas I H, 2017. Power Quality Improvement via Optimal Capacitor Placement in Electrical Distribution Systems using Symbiotic Organisms Search Algorithm. Mugla Journal of Science and Technology, 3(1):64-68.