Research Article
BibTex RIS Cite

Toz metalurjisi ile Üretilen NiTi Alaşımına Al'un Etkisi

Year 2021, , 256 - 267, 21.03.2021
https://doi.org/10.17798/bitlisfen.841400

Abstract

Bu çalışmada, Ti-50,5Ni-xAl(x=0, 2, 4) alaşımı toz metalürjisi yöntemlerinden SHS ile üretildi. Üretilen NiTiAl alaşımlarında Al oranının numunelerin mikroyapılarına ve mikrosertliklerine etkileri detaylı bir şekilde incelendi. Mikroyapı analizleri optik mikroskobu ve taramalı elektron mikroskobu (SEM) ile, faz bileşenleri ise Enerji dağılımlı spektroskopi (EDX) ve X-Işınları Kırınım Cihazı (XRD) analizi ile tespit edildi. Sertlik ölçüm testleri Vickers (Hv) mikrosertlik ölçüm cihazında yapılmıştır. Ateşleme sonrası ekzotermik reaksiyon sonucunda başlayan yanma reaksiyonu esnasında yüzeyde oluşan sıcaklık değişimi lazer sıcaklık ölçüm cihaz ile tespit edildi. Optik mikroskop(OM) analizleri sonucunda Al içeriğinin artmasına bağlı olarak gözenek oranı arttı. Ayrıca Al ilavesiz NiTi numunesinde ise yanma kanallarının yoğun olduğu görüldü. Hem EDX hem de XRD anliz sonuçlarında alaşımlarda NiTi, NiTi2 ve Ti3Al fazlarının varlığı tespit edildi. Yüzey sıcaklık ölçüm sonuçlarında yanma reaksiyonu en düşük elde edilirken 550℃ en yüksek 1250 ℃ ölçüldü. Mikrosertlik ölçüm sonuçlarında en düşük sertlik değeri 176.8 HV0,1 ağ. %4 Al numunesinden elde edilirken, en yüksek değer ise 301.7 HV NiTi numunesinde ölçüldü.

References

  • Tosun G., Kilic M., Ozler L., Tosun N. 2018. Characterization of a Porous Nickel-Titanium Alloy Produced with Self-Propagating High-Temperature Synthesis. MTAEC9, 52 (4): 435.
  • Shanmugavel R., Mokkandi P., Jayamani M., Rajini N., Uthayakumar M., Thirumalaikumaran S. 2017. Mechanical and Machinability characteristics of Al–NiTi composites reinforced with SiC particulates. J Aust Ceram Soc., 53: 177-185.
  • Velmurugan C., Senthilkumar V., Dinesh S., Arulkirubakaran D. 2018. Review on phase transformation behavior of NiTi shape memory alloys. Mater Today Proc., 5: 14597-14606.
  • Yener T., Siddique S., Walther F., Zeytin S. 2015. Effect of Electric Current on the Production of NiTi Intermetallıcs Via Electric-Current-Activated Sintering. Materiali In Tehnologije, 49: 721.
  • Farvizi M., Akbarpour R.M., Ahn H-D., Kim S.H. 2016. Compressive behavior of NiTi-based composites reinforced with alumina nanoparticles. J Alloys Compd., 688: 803-807.
  • Zhao C., Liang H., Luo S., Yang J., Zemin Wang Z. 2020. The effect of energy input on reaction, phase transition and shape memory effect of NiTi alloy by selective laser melting. J Alloys Compd 817: 153288.
  • Zeng Z., Cong B.Q., Oliveira J.P., Ke W.C., Schell N., Peng B., Qi Z.W., Ge F.G., Zhang W., Ao S.S. 2020. Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: microstructure and mechanical properties. Addit Manuf., doi: https://doi.org/10.1016/j.addma.2020.101051.
  • Lou J., He H., Li Y., Zhu C., Chen Z., Liu C., 2016. Effects of high O contents on the microstructure, phase-transformation behaviour, and shape-recovery properties of porous NiTi-based shape-memory alloys. Materials and Design, 106: 37-44.
  • Xu J.L., Bao L.Z., Liu A.H., Jin X.F., Luo J.M., Zhong Z.C., Zheng Y.F. 2015. Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. J Alloys Compd., 645: 137-142. Kurt B., I. Somunkiran İ. 2008. Interface microstructure of porous Ni–Ti and Co–Cr–Mo powder alloy couple fabricated by SHS process. Powder Metallurgy, 51 (3): 254-256.
  • Gunter V., Yasenchuk Y., Gunther S., Marchenko E., Yuzhakov M. 2019. Biocompatibility of Porous SHS-TiNi. Materials Science Forum, 970: 320-327.
  • Salvetr P., Školáková A., Novák P. 2017. Effect of magnesium addition on the structural homogeneity of NiTi alloy produced by self-propagating high-temperature synthesis. Kovove Mater., 55: 379-383.
  • Dagdelen F., Balci E., Qader N.I, Ozen E., Kok M., Kanca S.M., Abdullah S.S., Mohammed S.S. 2020. Influence of the Nb Content on the Microstructure and Phase Transformation Properties of NiTiNb Shape Memory Alloys. JOM, 72: 4.
  • Duan S., Shi X., Zhang M., Li B., Dou G., Guo H., Guo J. 2019. Determination of the thermodynamic properties of Ni-Ti, Ni-Al, and Ti-Al, and nickel-rich Ni-Al-Ti melts based on the atom and molecule coexistence theory. J Mol Liq., 294: 111462.
  • Shia J., Zheng A., Lin Z., Chen R., Zheng J., Cao Z. 2019. Effect of process control agent on alloying and mechanical behavior of L21 phase Ni–Ti–Al alloys. J Mater Sci Eng A, 740-741: 130-136.
  • Chen H., Zheng J.L., Zhang X.F., Zhang H. 2017. Thermal stability and hardening behavior in superelastic Ni-rich Nitinol alloys with Al addition. J Mater Sci Eng A, 708: 514-522.
  • Zhao Y., Wang L., Sun Y., Liu H., Jiang C., Ji V., Li W. 2019. Influences of Al and Ti particles on microstructure, internal stress and property of Ni composite coatings. J Alloys Compd., 793: 314-325.
  • Kim D.H., Kim W.T., Kim D.H. 2004. Formation and crystallization of Al–Ni–Ti amorphous alloys. J Mater Sci Eng A, 385: 44-53.
  • Hsiung L-C., Sheu H-H. 2009. A comparison of the phase evolution in Ni, Al, and Ti powder mixtures synthesized by SHS and MA processes. J Alloys Compd., 479: 314-325.
  • Sichani R.H., Salehi M., Edris H., Farani T.M. 2017. The effect of APS parameter on the microstructural, mechanical and corrosion properties of plasma sprayed Ni-Ti-Al intermetallic coatings. Surf Coat Technol., 309: 959-968.
  • Hu R., Nash P., Chen Q., Zhang L., Du Y. 2009. Heat capacities of several Al–Ni–Ti compounds. Thermochimica Acta, 486: 57-65.
  • Kılıç M., Beken M., Özdemir N. 2019. Investigation of the Effect of Sintering Process After Shs Processing on Intermetallic Coating. Fırat Üniversitesi Müh. Bil. Dergisi, 31 (1): 167-176.
  • Monogenov A.A., Gunther V.E., Ivchenko O.A., Stebluk A.N., Radkewich A.A., Ariamkin A.A., Shtofin S.S. 2017. Structure and Properties of Porous Alloys Based on NiTi Doped by Al, Fabricated by SHS-method, in Shape Memory Biomaterials and Implants in Medicine. KnE Materials Science, 62-71.
  • Morsi K. 2001. Review: reaction synthesis processing of Ni–Al intermetallic materials. J Mater Sci Eng A, 299: 1-15.
  • Sina H., Surreddi B.K., Iyengar S. 2016. Phase evolution during the reactive sintering of ternary Al-Ni-Ti powder compacts. J Alloys Compd., 661: 294-305.
  • Kaya M., Orhan N., Kurt B. 2009. Effect of solution treatment under load on microstructure and fabrication of porous NiTi shape memory alloy by self-propagating high temperature synthesis. Powder Metallurgy, 52 (1): 36-41.
  • Kaya M., Orhan N., Tosun G. 2010. The effect of the combustion channels on the compressive strength of porous NiTi shape memory alloy fabricated by SHS as implant material. Curr Opin Solid State Mater Sci., 14: 21-25.
  • Dong H.X., Jiang Y., He Y.H., Song M., Zou J., Xu N.P., Huang B.Y., Liu C.T., Liaw P.K. 2009. Formation of porous Ni–Al intermetallics through pressureless reaction synthesis. J Alloys Compd., 484: 907-913.
  • Novák P., Mejzlíková L, Michalcová A., Čapek J., Beran P., Vojtěch D. 2013. Effect of SHS conditions on microstructure of NiTi shape memory alloy. Intermetallics, 42: 85-91.
  • Liu B., Liu Z., Liu X., Wang W., Wang L. 2013. Effect of sintering temperature on the microstructure and mechanical properties of Ti50Ni50 and Ti47Ni47Al6 intermetallic alloys. J Alloys Compd., 578: 373-379.
  • Tosun G., Ozler L., Kaya M., Orhan N. 2009. A study on microstructure and porosity of NiTi alloy implants produced by SHS. J Alloys Compd., 487: 605-611.
  • Khanlari K., Ramezani M., Kelly P., Cao P., Neitzert T. 2018.Synthesis of As-sintered 60NiTi Parts with a High Open Porosity Level. Materials Research, 21 (5): e20180088.
  • Salvetr P., Školáková A., Hudrisier C., Novák P., Vojtěch D. 2018. Reactive Sintering Mechanism and Phase Formation in Ni-Ti-Al Powder Mixture During Heating. Materials, 11: 689.
  • Xu J.L., Bao L.Z., Liu A.H., Jin X.J., Tong Y.X., Luo J.M., Zhong Z.C., Zheng Y.F. 2015. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. Mater Sci Eng C, 46: 387-393.
  • Mousavi T., Karimzadeh F., Abbasi H.M. 2009. Mechanochemical assisted synthesis of NiTi intermetallic based nanocomposite reinforced by Al2O3. J Alloys Compd., 467: 173-178.
  • Raghavan V. 2005. Al-Ni-Ti (Aluminum-Nickel-Titanium). J Phs Eqil and Diff, 26: 268-272.
  • Gashti O.S., Shokuhfar A., Ebrahimi-Kahrizsangi R., Nasiri-Tabrizi B. 2010. Synthesis of nanocrystalline intermetallic compounds in Ni–Ti–Al system by mechanothermal method. J Alloys Compd., 491: 344-348.
  • Li P., Wang Y., Meng F., Cao L., He Z. 2019. Effect of Heat Treatment Temperature on Martensitic Transformation and Superelasticity of the Ti49Ni51 Shape Memory Alloy. Materials, 12: 2539.
  • Kilic M., Yenigun B., Bati B., Balalan Z., Kirik İ. 2019. Effect of Cu addition on porous NiTi SMAs produced by self propagating high-temperature Synthesis. Materials Testing, 61 (12): 1140-1144.
  • Aksöz S. 2017. Microstructural and Mechanical Investigation of NiTi Intermetallics Produced by Hot Deformation Technique. Arab J Sci Eng., 42: 2573-2581.
  • Novák P., Skoláková A., Pignol D., Průš F., Salvetr P., Kubatík F.T., Perriere L., Karlík M. 2016. Finding the energy source for self-propagating high-temperature synthesis production of NiTi shape memory alloy. Mater Chem Phys., 181: 295-300.
  • Baumann A.M. 2004. Nickel–titanium: options and challenges. Dent Clin N Am, 48: 55-67.
  • Ye N., Ren X., Liang J. 2020. Microstructure and mechanical properties of Ni/Ti/Al/Cu composite produced by accumulativeroll bonding (ARB) at room temperature. J. Mater. Res. Technol., 9 (3): 5524-5532.
  • Sang C., Cai X., Zhu L., Ren X., Niu G., Wang X., Feng P. 2020. Interfacial microstructure of Ti/Ni joints with Ti–Al interlayer by rapid thermal explosion bonding in vacuum. Vacuum, 171: 109028.
  • Čapek J., Kučera V., Fousovà M., Vojtĕch D. 2013. Preparation of The NiTi Shape Memory Alloy By The Te-Shs Method – Influence of the Sintering Time. METAL 2013-22nd International Conference on Metallurgy and Materials, Conference Proceedings, 15-17 May, Brno, Czech Republic, E.
Year 2021, , 256 - 267, 21.03.2021
https://doi.org/10.17798/bitlisfen.841400

Abstract

References

  • Tosun G., Kilic M., Ozler L., Tosun N. 2018. Characterization of a Porous Nickel-Titanium Alloy Produced with Self-Propagating High-Temperature Synthesis. MTAEC9, 52 (4): 435.
  • Shanmugavel R., Mokkandi P., Jayamani M., Rajini N., Uthayakumar M., Thirumalaikumaran S. 2017. Mechanical and Machinability characteristics of Al–NiTi composites reinforced with SiC particulates. J Aust Ceram Soc., 53: 177-185.
  • Velmurugan C., Senthilkumar V., Dinesh S., Arulkirubakaran D. 2018. Review on phase transformation behavior of NiTi shape memory alloys. Mater Today Proc., 5: 14597-14606.
  • Yener T., Siddique S., Walther F., Zeytin S. 2015. Effect of Electric Current on the Production of NiTi Intermetallıcs Via Electric-Current-Activated Sintering. Materiali In Tehnologije, 49: 721.
  • Farvizi M., Akbarpour R.M., Ahn H-D., Kim S.H. 2016. Compressive behavior of NiTi-based composites reinforced with alumina nanoparticles. J Alloys Compd., 688: 803-807.
  • Zhao C., Liang H., Luo S., Yang J., Zemin Wang Z. 2020. The effect of energy input on reaction, phase transition and shape memory effect of NiTi alloy by selective laser melting. J Alloys Compd 817: 153288.
  • Zeng Z., Cong B.Q., Oliveira J.P., Ke W.C., Schell N., Peng B., Qi Z.W., Ge F.G., Zhang W., Ao S.S. 2020. Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: microstructure and mechanical properties. Addit Manuf., doi: https://doi.org/10.1016/j.addma.2020.101051.
  • Lou J., He H., Li Y., Zhu C., Chen Z., Liu C., 2016. Effects of high O contents on the microstructure, phase-transformation behaviour, and shape-recovery properties of porous NiTi-based shape-memory alloys. Materials and Design, 106: 37-44.
  • Xu J.L., Bao L.Z., Liu A.H., Jin X.F., Luo J.M., Zhong Z.C., Zheng Y.F. 2015. Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. J Alloys Compd., 645: 137-142. Kurt B., I. Somunkiran İ. 2008. Interface microstructure of porous Ni–Ti and Co–Cr–Mo powder alloy couple fabricated by SHS process. Powder Metallurgy, 51 (3): 254-256.
  • Gunter V., Yasenchuk Y., Gunther S., Marchenko E., Yuzhakov M. 2019. Biocompatibility of Porous SHS-TiNi. Materials Science Forum, 970: 320-327.
  • Salvetr P., Školáková A., Novák P. 2017. Effect of magnesium addition on the structural homogeneity of NiTi alloy produced by self-propagating high-temperature synthesis. Kovove Mater., 55: 379-383.
  • Dagdelen F., Balci E., Qader N.I, Ozen E., Kok M., Kanca S.M., Abdullah S.S., Mohammed S.S. 2020. Influence of the Nb Content on the Microstructure and Phase Transformation Properties of NiTiNb Shape Memory Alloys. JOM, 72: 4.
  • Duan S., Shi X., Zhang M., Li B., Dou G., Guo H., Guo J. 2019. Determination of the thermodynamic properties of Ni-Ti, Ni-Al, and Ti-Al, and nickel-rich Ni-Al-Ti melts based on the atom and molecule coexistence theory. J Mol Liq., 294: 111462.
  • Shia J., Zheng A., Lin Z., Chen R., Zheng J., Cao Z. 2019. Effect of process control agent on alloying and mechanical behavior of L21 phase Ni–Ti–Al alloys. J Mater Sci Eng A, 740-741: 130-136.
  • Chen H., Zheng J.L., Zhang X.F., Zhang H. 2017. Thermal stability and hardening behavior in superelastic Ni-rich Nitinol alloys with Al addition. J Mater Sci Eng A, 708: 514-522.
  • Zhao Y., Wang L., Sun Y., Liu H., Jiang C., Ji V., Li W. 2019. Influences of Al and Ti particles on microstructure, internal stress and property of Ni composite coatings. J Alloys Compd., 793: 314-325.
  • Kim D.H., Kim W.T., Kim D.H. 2004. Formation and crystallization of Al–Ni–Ti amorphous alloys. J Mater Sci Eng A, 385: 44-53.
  • Hsiung L-C., Sheu H-H. 2009. A comparison of the phase evolution in Ni, Al, and Ti powder mixtures synthesized by SHS and MA processes. J Alloys Compd., 479: 314-325.
  • Sichani R.H., Salehi M., Edris H., Farani T.M. 2017. The effect of APS parameter on the microstructural, mechanical and corrosion properties of plasma sprayed Ni-Ti-Al intermetallic coatings. Surf Coat Technol., 309: 959-968.
  • Hu R., Nash P., Chen Q., Zhang L., Du Y. 2009. Heat capacities of several Al–Ni–Ti compounds. Thermochimica Acta, 486: 57-65.
  • Kılıç M., Beken M., Özdemir N. 2019. Investigation of the Effect of Sintering Process After Shs Processing on Intermetallic Coating. Fırat Üniversitesi Müh. Bil. Dergisi, 31 (1): 167-176.
  • Monogenov A.A., Gunther V.E., Ivchenko O.A., Stebluk A.N., Radkewich A.A., Ariamkin A.A., Shtofin S.S. 2017. Structure and Properties of Porous Alloys Based on NiTi Doped by Al, Fabricated by SHS-method, in Shape Memory Biomaterials and Implants in Medicine. KnE Materials Science, 62-71.
  • Morsi K. 2001. Review: reaction synthesis processing of Ni–Al intermetallic materials. J Mater Sci Eng A, 299: 1-15.
  • Sina H., Surreddi B.K., Iyengar S. 2016. Phase evolution during the reactive sintering of ternary Al-Ni-Ti powder compacts. J Alloys Compd., 661: 294-305.
  • Kaya M., Orhan N., Kurt B. 2009. Effect of solution treatment under load on microstructure and fabrication of porous NiTi shape memory alloy by self-propagating high temperature synthesis. Powder Metallurgy, 52 (1): 36-41.
  • Kaya M., Orhan N., Tosun G. 2010. The effect of the combustion channels on the compressive strength of porous NiTi shape memory alloy fabricated by SHS as implant material. Curr Opin Solid State Mater Sci., 14: 21-25.
  • Dong H.X., Jiang Y., He Y.H., Song M., Zou J., Xu N.P., Huang B.Y., Liu C.T., Liaw P.K. 2009. Formation of porous Ni–Al intermetallics through pressureless reaction synthesis. J Alloys Compd., 484: 907-913.
  • Novák P., Mejzlíková L, Michalcová A., Čapek J., Beran P., Vojtěch D. 2013. Effect of SHS conditions on microstructure of NiTi shape memory alloy. Intermetallics, 42: 85-91.
  • Liu B., Liu Z., Liu X., Wang W., Wang L. 2013. Effect of sintering temperature on the microstructure and mechanical properties of Ti50Ni50 and Ti47Ni47Al6 intermetallic alloys. J Alloys Compd., 578: 373-379.
  • Tosun G., Ozler L., Kaya M., Orhan N. 2009. A study on microstructure and porosity of NiTi alloy implants produced by SHS. J Alloys Compd., 487: 605-611.
  • Khanlari K., Ramezani M., Kelly P., Cao P., Neitzert T. 2018.Synthesis of As-sintered 60NiTi Parts with a High Open Porosity Level. Materials Research, 21 (5): e20180088.
  • Salvetr P., Školáková A., Hudrisier C., Novák P., Vojtěch D. 2018. Reactive Sintering Mechanism and Phase Formation in Ni-Ti-Al Powder Mixture During Heating. Materials, 11: 689.
  • Xu J.L., Bao L.Z., Liu A.H., Jin X.J., Tong Y.X., Luo J.M., Zhong Z.C., Zheng Y.F. 2015. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. Mater Sci Eng C, 46: 387-393.
  • Mousavi T., Karimzadeh F., Abbasi H.M. 2009. Mechanochemical assisted synthesis of NiTi intermetallic based nanocomposite reinforced by Al2O3. J Alloys Compd., 467: 173-178.
  • Raghavan V. 2005. Al-Ni-Ti (Aluminum-Nickel-Titanium). J Phs Eqil and Diff, 26: 268-272.
  • Gashti O.S., Shokuhfar A., Ebrahimi-Kahrizsangi R., Nasiri-Tabrizi B. 2010. Synthesis of nanocrystalline intermetallic compounds in Ni–Ti–Al system by mechanothermal method. J Alloys Compd., 491: 344-348.
  • Li P., Wang Y., Meng F., Cao L., He Z. 2019. Effect of Heat Treatment Temperature on Martensitic Transformation and Superelasticity of the Ti49Ni51 Shape Memory Alloy. Materials, 12: 2539.
  • Kilic M., Yenigun B., Bati B., Balalan Z., Kirik İ. 2019. Effect of Cu addition on porous NiTi SMAs produced by self propagating high-temperature Synthesis. Materials Testing, 61 (12): 1140-1144.
  • Aksöz S. 2017. Microstructural and Mechanical Investigation of NiTi Intermetallics Produced by Hot Deformation Technique. Arab J Sci Eng., 42: 2573-2581.
  • Novák P., Skoláková A., Pignol D., Průš F., Salvetr P., Kubatík F.T., Perriere L., Karlík M. 2016. Finding the energy source for self-propagating high-temperature synthesis production of NiTi shape memory alloy. Mater Chem Phys., 181: 295-300.
  • Baumann A.M. 2004. Nickel–titanium: options and challenges. Dent Clin N Am, 48: 55-67.
  • Ye N., Ren X., Liang J. 2020. Microstructure and mechanical properties of Ni/Ti/Al/Cu composite produced by accumulativeroll bonding (ARB) at room temperature. J. Mater. Res. Technol., 9 (3): 5524-5532.
  • Sang C., Cai X., Zhu L., Ren X., Niu G., Wang X., Feng P. 2020. Interfacial microstructure of Ti/Ni joints with Ti–Al interlayer by rapid thermal explosion bonding in vacuum. Vacuum, 171: 109028.
  • Čapek J., Kučera V., Fousovà M., Vojtĕch D. 2013. Preparation of The NiTi Shape Memory Alloy By The Te-Shs Method – Influence of the Sintering Time. METAL 2013-22nd International Conference on Metallurgy and Materials, Conference Proceedings, 15-17 May, Brno, Czech Republic, E.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Musa Kılıç 0000-0001-5808-6917

Publication Date March 21, 2021
Submission Date December 15, 2020
Acceptance Date February 18, 2021
Published in Issue Year 2021

Cite

IEEE M. Kılıç, “Toz metalurjisi ile Üretilen NiTi Alaşımına Al’un Etkisi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 1, pp. 256–267, 2021, doi: 10.17798/bitlisfen.841400.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr