Research Article
BibTex RIS Cite

The Effect of Fine Content on Undrained Shear Strength Behavior and Steady State Line of Silty Sands

Year 2021, , 507 - 520, 07.06.2021
https://doi.org/10.17798/bitlisfen.856805

Abstract

The undrained shear strength behavior of sand soils with fines is affected by the initial conditions after consolidation as well as the fine grain content, void ratio variation and mean effective stress level. Therefore, in order to evaluate the behavior of soils containing fine grain, more parameters should be considered compared to clean sand. Critical state soil mechanics (CSSM) is a appropriate framework to understand the behavior of this soil types with considering all of the effective parameters. In this study a series of undrained static triaxial tests were carried out on sand-silt mixtures containing 10%, 20%, 30%, 40% and 50% fine contents at an effective consolidation pressures of 50 kPa, 100 kPa and 200 kPa. The experimental results show that undrained shear strength behavior and steady state line (SSL) are significantly affected by the fine grain contents. It was observed that up to a threshold fine content the location of the SSL moves downward from the clean sand position and beyond that, it move upward with the increase of the fine content. This shows that the shear strength behavior and compression tendency of the samples change with the change of the fine grain content. However, it was observed that the steady state parameter (Mss) and the mobilized friction angle (φss) values in steady state were also affected by the fines content.

References

  • Castro G. 1969. Liquefaction of sands. (Doctoral dissertation), Harvard University, Cambridge, Massachusetts.
  • Lindenberg J., Koning H.L. 1981. Critical density of sand. Geotechnique, 31 (2): 231-245.
  • Vaid Y.P., Chung E.K.F., Kuerbis R.H. 1990. Stress path and steady state. Canadian Geotechnical Journal, 21 (1): 1-7.
  • Sladen J.A., D’Hollander R.D., Krahn J. 1985. The liquefaction of sands, a collapse surface approach. Canadian Geotechnical Journal, 22: 564-78.
  • Been K., Jefferies M.G. 1985. A state parameter for sands. Geotechnique, 35 (2): 99-112.
  • Poulos S. J., Castro G., France J. 1985. Liquefaction evaluation procedure. Geotech. Engrg., 111 (6): 772-792.
  • Mohamad R., Dobry R. 1986. Undrained monotonic and cyclic triaxial strength of sand. J. Geotech. Engrg., 112 (10): 941-958.
  • Alarcon-Guzman A., Leonards G.A., Chameau J.L. 1988. Undrained monotonic and cyclic strength of sands. ASCE J. Geotech. Eng, 114 (10): 1089-1109.
  • Lade P.V. 1992. Static instability and liquefaction of loose sandy slopes. Journal of Geotechnical Engineering, 118 (1): 51-71.
  • Ishihara K. 1993. Liquefaction and flow failure during earthquakes. Geotechnique, 43 (3): 351-415.
  • Yamamuro J.A., Lade P.V. 1997. Instability of granular materials at high pressures, Soils and Foundations. Japanese Society of Soil Mechanics and Foundation Engineering, 37 (1): 41-52.
  • Thevanayagam S., Mohan S. 2000. Intergranular state variables and stress-strain behaviour of silty sands. Geotechnique, 50 (1): 1-23.
  • Bobei D.C., Lo S-C.R. 2001. Static liquefaction of Sydney sand mixed with both plastic and non-plastic fines. In proceedings of the 14th Southeast Asian Geotechnical Conference, 485-491.
  • Koester J.P. 1994. The influence of fine type and content on cyclic strength. Ground Failures Under Seismic Conditions, Geotechnical Special Publication, ASCE, 44: 17-33.
  • Koester J.P. 1998. Triggering and post-liquefaction strength issues in fine-grained soils. Physics and Mechanics of Soil Liquefaction, Ed. Lade and Yamamuro, Balkema Pubs., 77-89.
  • Zlatovic S., Ishihara K. 1995. On the influence of nonplastic fines on resual strength. Proceedings of the 1 st International Conference on Earthquake Geotechnical Engineering, Netherlands, 239-44.
  • Thevanayagam S. 1998. Relative roles of coarse and fine grains on the mechanical response of granular mixes. ASCE, J. Geotech. & Geoenv. Eng. in review.
  • Thevanayagam S. 2000. Liquefaction potential and undrained fragility of silty soils. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2383p.
  • Polito C., Martin II J. R. 2001. Effects of nonplastic fines on the liquefaction resistance of sands. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127 (5): 408-415.
  • Bouckovalas G.D., Andrianopoulos K.I., Papadimitriou A.G. 2003. A critical state interpretation for the cyclic liquefaction resistance of silty sands. Soil Dynamics and Earthquake Engineering, 23: 115-125.
  • Xenaki V.C., Athanasopoulos G.A. 2003. Liquefaction Resistance of Sand-Silt Mixtures: an Experimental Investigation of the Effect of Fines. Soil Dynamics and Earthquake Engineering 23: 183-194.
  • Naeini S.A., Baziar, M.H. 2004. Effect of fines content on steady-state strength of mixed and layered samples of a sand. Soil Dynamics and Earthquake Engineering, 24: 181-187.
  • Yang S., Lacasse S., Sandven R. 2006. Determination of the Transitional Fines Content of Mixtures of Sand and Non-plastic Fines. Geotechnical Testing Journal, 29 (2):102-107.
  • Murthy T.G., Loukidis D., Carraro J.A.H., Prezzi M., Salgado R. 2007. Undrained Monotonic Response of Clean and Silty Sands-Non-Linear Soil Stiffness in Routine Design. Geotechnique, 57 (3): 273-288.
  • Chiu C.F., Fu X.J. 2008. Interpreting undrained instability of mixed soils by equivalent intergranular state parameter. Géotechnique, 58 (9): 751-755.
  • Papadopoulou A., Tika T. 2008. The effect of fine on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soil and Foundations, 48 (5): 713-725.
  • Rees S.D. 2010. Effects of Fines on the Undrained Behavior of Christchurch Sandy Soils. Ph.D. thesis, University of Canterbury, New Zealand.
  • Rahman M.M. 2009. Modelling the influence of fines on liquefaction behaviour. Ph.D. thesis, University of New South Wales at Australian Defence Force Academy.
  • Phan T.A.V., Hsiao D.H., Nguyen P. 2016. Critical State Line and State Parameter of Sand-Fines Mixtures. Procedia Engineering, 142: 299-306.
  • Jovicic V., Coop M.R. 1997. Stiffness of coarse grained soils at small strains. Geotechnique, 47 (3): 545-561.
  • Been K., Jefferies M. 2004. Stress-dilatancy in very loose sand. Canadian Geotechnical Journal, 41 (5): 972-989.
  • Yang S.L., Sandven R., Grande L. 2006b. Instability of sand–silt mixtures. Soil Dyn Earthq Eng., 26 (2): 183-190.
  • Wood F.M., Yamamuro J.A., Lade, P.V. 2008. Effect of depositional method on the undrained response of silty sand. Canadian Geotechnical Journal, 45: 1525-1537.
  • Bobei D.C., Lo S.R., Wanatowski D., Gnanendran C.T., Rahman M.M. 2009. Modified state parameter for characterizing static liquefaction of sand with fines. Canadian Geotechnical Journal, 46 (3): 281-295.
  • Abedi M., Yasrobi S. 2010. Effects of plastic fines on the instability of sand. Soil Dynamics and Earthquake Engineering, 30 (3): 61-67.
  • Rahman M. M., Lo S.R., Cubrinovski M. 2010. On Equivalent Granular Void Rtio and Behaviour of Loose Sand. Canadian Geotechnical Journal, 45 (10): 1439-1456.
  • Stamatopoulos C. 2010. An experimental study of the liquefaction strength of silty sands in terms of the state parameter. Soil Dynamics and Earthquake Engineering, 30: 662-678.
  • Huang A.B., Chuang S.Y. 2011. Correlating cyclic strength with fines contents through state parameters. Soils Found, 51 (6): 991-1001.
  • Rahman M.M., Lo S. 2011. Predicting the onset of static liquefaction of loose sand with fines, Journal of Geotechnical and Geoenvironmental Engineering, 138 (8): 1037-1041.
  • Baki M.A.L., Rahman M.M., Lo S.R., Gnanendran C.T. 2012. Linkage between static and cyclic liquefaction of loose sand with a range of fines contents. Canadian Geotechnical Journal, 49 (8): 891-906.
  • Qadimi A., Mohammadi A. 2014. Evaluation of state indices in predicting the cyclic and monotonic strength of sands with different fines contents. Soil Dyn Earthq Eng., 66: 443-58.
  • Cherif Taiba A., Mahmoudi Y., Belkhatir M., Kadri A., Schanz T. 2018. Experimental characterization of the undrained instability and steady state of silty sand soils under monotonic loading conditions. International Journal of Geotechnical Engineering, 12 (5): 513-529.
  • Høeg K., Dyvik R., Sandbækken G. 2000. Strength of Undisturbed Versus Reconstituted Silt and Silty Sand Specimens. J. Geotech. Geoenviron. Eng., 126 (7): 606-617.
  • Vaid Y.P., Sivathayalan S. 2000. Fundamental factors affecting lique- faction susceptibility of sands. Can. Geotech. J., 37 (3): 592-606.
  • Yang S.L., Sandven R., Grande L. 2006c. Steady-state Lines of Sand-siltmixtures. Can. Geotech. J., 43 (11): 1213-1219.
  • Rahman M.M., Lo S.R. 2007. Equivalent granular void ratio and state parameters for loose clean sand with small amount of fines. 10Th Australia New Zealand Conference on Geomechanics, Brisbane, Australia, 674-679.
  • Wood F.M., Yamamuro J.A., Lade P.V. 2008. Effect of depositional method on the undrained response of silty sand. Canadian Geotechnical Journal, 45: 1525-1537.
  • Yamamuro J.A., Wood F.M., Lade P.V. 2008. Effect of depositional method on the microstructure of silty sand. Can. Geotech. J., 45: 1538- 1555.
  • Kwa K.A., Airey D.W. 2016. Critical state interpreation of effects of fine in silty sands. ICE Publishing, Geotechnique Latters, 6: 100-1005.
  • Talamkhani S., Naeini S.A. 2018. International Effect of Plastic Fines on Undrained Behavior of Clayey Sands. International Journal of Geotechnical and Geological Engineering, 12 (8): 525-528.
  • Atkinson J.H., Bransby P.L. 1978. The Mechanics of Soil: An Introduction to Critical State Soil Mechanics. McGraw-Hill Book Company (UK) Limited, Maidenhead, Berkshire, England, ISBN 07 084135 7.
  • Schofield A.B., Wroth C.P. 1968. Critical state soil mechanics. London, McGraw-Hill.
  • Roscoe K.H., Schofield A.N. 1958. Wroth CP. On the yielding of soils. Géotechnique, 8 (1): 22-53.
  • Yamamuro J.A., Lade P.V. 1998. Steady-state concepts and static liquefaction of silty sands. Journal of geotechnical and geoenvironmental engineering, 124 (9): 868-877.
  • Poulos S.J. 1981. The steady state of deformation. Journal of the Geotechnical Engineering Division, ASCE, 107 (5): 553-562.
  • Chu J., Lo S.C.R., Lee I.K. 1993. Instability of granular soils under strain path testing. Journal of Geotechnical Engineering, 119 (5): 874-892.
  • Bobei D.C., Lo S.R. 2001. Static liquefaction of Sydney sand mixed with both plastic and non-plastic fines. In Proceedings of the 14th Southeast Asian Geotechnical Conference, Hong Kong, 9-14.
  • Bobei D.C., Lo S.R. 2005. Reverse behaviour and critical state of sand with small amount of fines. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechni- cal Engineering (16ICSMGE), Osaka, Japan, Millpress Science Publishers, Rotterdam, the Netherlands. 2: 475-478.
  • ASTM D7928. Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis, American Society for Testing and Materials.
  • ASTM D4318. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, American Society for Testing and Materials.
  • Bjerrum L., Kringstad S., Kummeneje D. 1961. The shear strength of a fine sand. In: Proceedings of 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, 1: 29-37.
  • Leroueil S., Vaughan P.R. 1990. The general and congruent effects of structure in natural soils and weak rocks, Géotechnique, 40 (3): 467-88.
  • Kramer S.L., Seed H.B. 1988. Initiation of soil liquefaction under static loading conditions, Journal of Geotechnical Engineering, 114 (4): 412-430.
  • Konrad J.M. 1990. Minimum Undrained Strength Versus Steady-State Strength of Sands. Journal of Geotechnical Engi- neering, 116 (6): 948-963.
  • Pitman T. D., Robertson P.K., Sego D.C.1994. Influence of Fines on the Collapse of Loose Sands. Canadian Geotechnical Journal, 31 (5): 728-739.
  • Frost J.D., Park J.Y. 2003. A Critical Assessment of the Moist Tamping Technique. Geotech. Test. J., 26 (1): 57-70.
  • Rahman M.M., Lo S., Gnanendran C.T. 2008. On equivalent granular void ratio and steady state behaviour of loose sand with fines. Canadian Geotechnical Journal, 45 (10): 1439-1456.
  • Wanatowski D., Chu J. 2008. Effect of Specimen Preparation Method on the Stress-Strain Behavior of Sand in Plane-Strain Compression Tests. Geotechnical Testing Journal, 31 (4): 308-320.
  • Sadrekarimi A., Olson S.M. 2012. Effect Effect of sample-preparation method on critical-state behavior of sands. Geotechnical Testing Journal, 35 (4): 1-15.
  • Ladd R.S. 1978. Preparing test specimens using under compaction, Geotechnical Testing Journal, ASTM, 1 (1): 16-23.
  • Belkhatir M., Arab A., Missoum H., Della N., Schanz T. 2011. Laboratory study on the liquefaction resistance of sand–silt mixtures: effect of grading characteristics. Granular Matter, 13: 599-609.
  • Cherif Taiba A., Belkhatir M., Kadri A., Mahmoudi Y., Schanz T. 2016. Insight into the effect of granulometric characteristics on the static liquefaction susceptibility of silty sand soils. Geotechnical and Geological Engineering, 34 (1): 367-382.
  • Della A., Arab M., Belkhatir M. 2011. Effect of confining pressure and depositional method on the undrained shearing response of medium dense sand. Journal of Iberian Geology, 37 (1): 37-44.
  • Benahmed N., Nguyen T.K., Hicher P.Y., Nicolas M. 2014. An experimental investigation into the effects of low plastic fines content on the behaviour of sand / silt mixtures. European Journal of Environmental and Civil Engineering. 37-41.
  • Belhouari F., Bendani K., Missoum H., Derkaoui M. 2015. Undrained static response of loose and medium dense silty sand of Mostaganem (Northern Algeria). Arab. J. Sci. Eng., 40: 1327-1342.
  • Mahmoudi Y., Cherif Taiba A., Belkhatir M., Schanz T. 2016. Experimental Investigation on Undrained Shear Behavior of Overconsolidated Sand–silt Mixtures: Effect of Sample Reconstitution. Geotechnical Testing Journal, 39 (3): 515-523.
  • Karim M.E., Alam J. 2017. Effect of nonplastic silt content on undrained shear strength of sand-silt mixtures. Int J Geo-Engine

İnce Dane İçeriğinin Siltli Kum Zeminlerin Drenajsız Kayma Dayanımı Davranışı ve Durağan Durum Çizgisi Üzerindeki Etkisi

Year 2021, , 507 - 520, 07.06.2021
https://doi.org/10.17798/bitlisfen.856805

Abstract

İnce dene içeren kum zeminlerin drenajsız kayma dayanımı davranışı konsolidasyon sonrası başlangıç koşulları yanısıra, ince dane içeriği, boşluk oranı değişimi ve ortalama efektif gerilme düzeyinden etkilenmektedir. Dolayısı ile ince dane içeren zeminlerin davranışlarının değerlendirilmesi için temiz kuma göre daha fazla parametre ele alınmalıdır. Kritik durum zemin mekaniği (CSSM), tüm bu parametreleri göz önünde bulundurarak bu zemin türlerinin davranışını anlamak için uygun bir çerçevedir. Bu çaşışmada %10, %20; %30, %40 ve %50 ince dane içeren kum-silt karışımı örnekleri üzerinde 50 kPa, 100 kPa ve 200 kPa efektif konsolidasiyon basınçları altına bir dizi statik üç eksenli basınç deneyleri gerçekleştirilmiştir. Deneysel sonuçlar, örneklerin drenajsız kayma dayanımı davranışlanının ve durağan durum çizgisinin (SSL) ince dane içeriğinden önemli ölçüde etkilendiğini göstermektedir. Belirli bir eşik ince dane içeriğine kadar durağan duzum çizgisi (SSL) konumunun temiz kum konumundan aşağıya doğru hareket ettiği ve bu değerin ötesinde, ince içeriğin artmasıyla yukarı doğru hareket ettiği görülmüştür. Bu da ince dane içeriğinin değişimi ile birlikte örneklerin kayma dayanımı davranışının ve sıkışma eğiliminin değiştiğini göstermektedir. Bununla birlikte durağan durum parametre (Mss) ve durağan durumundaki mobilize sürtünme açısı (φss) değerlerinin de ince dane içeriğinden etkilendiği görülmüştür.

References

  • Castro G. 1969. Liquefaction of sands. (Doctoral dissertation), Harvard University, Cambridge, Massachusetts.
  • Lindenberg J., Koning H.L. 1981. Critical density of sand. Geotechnique, 31 (2): 231-245.
  • Vaid Y.P., Chung E.K.F., Kuerbis R.H. 1990. Stress path and steady state. Canadian Geotechnical Journal, 21 (1): 1-7.
  • Sladen J.A., D’Hollander R.D., Krahn J. 1985. The liquefaction of sands, a collapse surface approach. Canadian Geotechnical Journal, 22: 564-78.
  • Been K., Jefferies M.G. 1985. A state parameter for sands. Geotechnique, 35 (2): 99-112.
  • Poulos S. J., Castro G., France J. 1985. Liquefaction evaluation procedure. Geotech. Engrg., 111 (6): 772-792.
  • Mohamad R., Dobry R. 1986. Undrained monotonic and cyclic triaxial strength of sand. J. Geotech. Engrg., 112 (10): 941-958.
  • Alarcon-Guzman A., Leonards G.A., Chameau J.L. 1988. Undrained monotonic and cyclic strength of sands. ASCE J. Geotech. Eng, 114 (10): 1089-1109.
  • Lade P.V. 1992. Static instability and liquefaction of loose sandy slopes. Journal of Geotechnical Engineering, 118 (1): 51-71.
  • Ishihara K. 1993. Liquefaction and flow failure during earthquakes. Geotechnique, 43 (3): 351-415.
  • Yamamuro J.A., Lade P.V. 1997. Instability of granular materials at high pressures, Soils and Foundations. Japanese Society of Soil Mechanics and Foundation Engineering, 37 (1): 41-52.
  • Thevanayagam S., Mohan S. 2000. Intergranular state variables and stress-strain behaviour of silty sands. Geotechnique, 50 (1): 1-23.
  • Bobei D.C., Lo S-C.R. 2001. Static liquefaction of Sydney sand mixed with both plastic and non-plastic fines. In proceedings of the 14th Southeast Asian Geotechnical Conference, 485-491.
  • Koester J.P. 1994. The influence of fine type and content on cyclic strength. Ground Failures Under Seismic Conditions, Geotechnical Special Publication, ASCE, 44: 17-33.
  • Koester J.P. 1998. Triggering and post-liquefaction strength issues in fine-grained soils. Physics and Mechanics of Soil Liquefaction, Ed. Lade and Yamamuro, Balkema Pubs., 77-89.
  • Zlatovic S., Ishihara K. 1995. On the influence of nonplastic fines on resual strength. Proceedings of the 1 st International Conference on Earthquake Geotechnical Engineering, Netherlands, 239-44.
  • Thevanayagam S. 1998. Relative roles of coarse and fine grains on the mechanical response of granular mixes. ASCE, J. Geotech. & Geoenv. Eng. in review.
  • Thevanayagam S. 2000. Liquefaction potential and undrained fragility of silty soils. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2383p.
  • Polito C., Martin II J. R. 2001. Effects of nonplastic fines on the liquefaction resistance of sands. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127 (5): 408-415.
  • Bouckovalas G.D., Andrianopoulos K.I., Papadimitriou A.G. 2003. A critical state interpretation for the cyclic liquefaction resistance of silty sands. Soil Dynamics and Earthquake Engineering, 23: 115-125.
  • Xenaki V.C., Athanasopoulos G.A. 2003. Liquefaction Resistance of Sand-Silt Mixtures: an Experimental Investigation of the Effect of Fines. Soil Dynamics and Earthquake Engineering 23: 183-194.
  • Naeini S.A., Baziar, M.H. 2004. Effect of fines content on steady-state strength of mixed and layered samples of a sand. Soil Dynamics and Earthquake Engineering, 24: 181-187.
  • Yang S., Lacasse S., Sandven R. 2006. Determination of the Transitional Fines Content of Mixtures of Sand and Non-plastic Fines. Geotechnical Testing Journal, 29 (2):102-107.
  • Murthy T.G., Loukidis D., Carraro J.A.H., Prezzi M., Salgado R. 2007. Undrained Monotonic Response of Clean and Silty Sands-Non-Linear Soil Stiffness in Routine Design. Geotechnique, 57 (3): 273-288.
  • Chiu C.F., Fu X.J. 2008. Interpreting undrained instability of mixed soils by equivalent intergranular state parameter. Géotechnique, 58 (9): 751-755.
  • Papadopoulou A., Tika T. 2008. The effect of fine on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soil and Foundations, 48 (5): 713-725.
  • Rees S.D. 2010. Effects of Fines on the Undrained Behavior of Christchurch Sandy Soils. Ph.D. thesis, University of Canterbury, New Zealand.
  • Rahman M.M. 2009. Modelling the influence of fines on liquefaction behaviour. Ph.D. thesis, University of New South Wales at Australian Defence Force Academy.
  • Phan T.A.V., Hsiao D.H., Nguyen P. 2016. Critical State Line and State Parameter of Sand-Fines Mixtures. Procedia Engineering, 142: 299-306.
  • Jovicic V., Coop M.R. 1997. Stiffness of coarse grained soils at small strains. Geotechnique, 47 (3): 545-561.
  • Been K., Jefferies M. 2004. Stress-dilatancy in very loose sand. Canadian Geotechnical Journal, 41 (5): 972-989.
  • Yang S.L., Sandven R., Grande L. 2006b. Instability of sand–silt mixtures. Soil Dyn Earthq Eng., 26 (2): 183-190.
  • Wood F.M., Yamamuro J.A., Lade, P.V. 2008. Effect of depositional method on the undrained response of silty sand. Canadian Geotechnical Journal, 45: 1525-1537.
  • Bobei D.C., Lo S.R., Wanatowski D., Gnanendran C.T., Rahman M.M. 2009. Modified state parameter for characterizing static liquefaction of sand with fines. Canadian Geotechnical Journal, 46 (3): 281-295.
  • Abedi M., Yasrobi S. 2010. Effects of plastic fines on the instability of sand. Soil Dynamics and Earthquake Engineering, 30 (3): 61-67.
  • Rahman M. M., Lo S.R., Cubrinovski M. 2010. On Equivalent Granular Void Rtio and Behaviour of Loose Sand. Canadian Geotechnical Journal, 45 (10): 1439-1456.
  • Stamatopoulos C. 2010. An experimental study of the liquefaction strength of silty sands in terms of the state parameter. Soil Dynamics and Earthquake Engineering, 30: 662-678.
  • Huang A.B., Chuang S.Y. 2011. Correlating cyclic strength with fines contents through state parameters. Soils Found, 51 (6): 991-1001.
  • Rahman M.M., Lo S. 2011. Predicting the onset of static liquefaction of loose sand with fines, Journal of Geotechnical and Geoenvironmental Engineering, 138 (8): 1037-1041.
  • Baki M.A.L., Rahman M.M., Lo S.R., Gnanendran C.T. 2012. Linkage between static and cyclic liquefaction of loose sand with a range of fines contents. Canadian Geotechnical Journal, 49 (8): 891-906.
  • Qadimi A., Mohammadi A. 2014. Evaluation of state indices in predicting the cyclic and monotonic strength of sands with different fines contents. Soil Dyn Earthq Eng., 66: 443-58.
  • Cherif Taiba A., Mahmoudi Y., Belkhatir M., Kadri A., Schanz T. 2018. Experimental characterization of the undrained instability and steady state of silty sand soils under monotonic loading conditions. International Journal of Geotechnical Engineering, 12 (5): 513-529.
  • Høeg K., Dyvik R., Sandbækken G. 2000. Strength of Undisturbed Versus Reconstituted Silt and Silty Sand Specimens. J. Geotech. Geoenviron. Eng., 126 (7): 606-617.
  • Vaid Y.P., Sivathayalan S. 2000. Fundamental factors affecting lique- faction susceptibility of sands. Can. Geotech. J., 37 (3): 592-606.
  • Yang S.L., Sandven R., Grande L. 2006c. Steady-state Lines of Sand-siltmixtures. Can. Geotech. J., 43 (11): 1213-1219.
  • Rahman M.M., Lo S.R. 2007. Equivalent granular void ratio and state parameters for loose clean sand with small amount of fines. 10Th Australia New Zealand Conference on Geomechanics, Brisbane, Australia, 674-679.
  • Wood F.M., Yamamuro J.A., Lade P.V. 2008. Effect of depositional method on the undrained response of silty sand. Canadian Geotechnical Journal, 45: 1525-1537.
  • Yamamuro J.A., Wood F.M., Lade P.V. 2008. Effect of depositional method on the microstructure of silty sand. Can. Geotech. J., 45: 1538- 1555.
  • Kwa K.A., Airey D.W. 2016. Critical state interpreation of effects of fine in silty sands. ICE Publishing, Geotechnique Latters, 6: 100-1005.
  • Talamkhani S., Naeini S.A. 2018. International Effect of Plastic Fines on Undrained Behavior of Clayey Sands. International Journal of Geotechnical and Geological Engineering, 12 (8): 525-528.
  • Atkinson J.H., Bransby P.L. 1978. The Mechanics of Soil: An Introduction to Critical State Soil Mechanics. McGraw-Hill Book Company (UK) Limited, Maidenhead, Berkshire, England, ISBN 07 084135 7.
  • Schofield A.B., Wroth C.P. 1968. Critical state soil mechanics. London, McGraw-Hill.
  • Roscoe K.H., Schofield A.N. 1958. Wroth CP. On the yielding of soils. Géotechnique, 8 (1): 22-53.
  • Yamamuro J.A., Lade P.V. 1998. Steady-state concepts and static liquefaction of silty sands. Journal of geotechnical and geoenvironmental engineering, 124 (9): 868-877.
  • Poulos S.J. 1981. The steady state of deformation. Journal of the Geotechnical Engineering Division, ASCE, 107 (5): 553-562.
  • Chu J., Lo S.C.R., Lee I.K. 1993. Instability of granular soils under strain path testing. Journal of Geotechnical Engineering, 119 (5): 874-892.
  • Bobei D.C., Lo S.R. 2001. Static liquefaction of Sydney sand mixed with both plastic and non-plastic fines. In Proceedings of the 14th Southeast Asian Geotechnical Conference, Hong Kong, 9-14.
  • Bobei D.C., Lo S.R. 2005. Reverse behaviour and critical state of sand with small amount of fines. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechni- cal Engineering (16ICSMGE), Osaka, Japan, Millpress Science Publishers, Rotterdam, the Netherlands. 2: 475-478.
  • ASTM D7928. Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis, American Society for Testing and Materials.
  • ASTM D4318. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, American Society for Testing and Materials.
  • Bjerrum L., Kringstad S., Kummeneje D. 1961. The shear strength of a fine sand. In: Proceedings of 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, 1: 29-37.
  • Leroueil S., Vaughan P.R. 1990. The general and congruent effects of structure in natural soils and weak rocks, Géotechnique, 40 (3): 467-88.
  • Kramer S.L., Seed H.B. 1988. Initiation of soil liquefaction under static loading conditions, Journal of Geotechnical Engineering, 114 (4): 412-430.
  • Konrad J.M. 1990. Minimum Undrained Strength Versus Steady-State Strength of Sands. Journal of Geotechnical Engi- neering, 116 (6): 948-963.
  • Pitman T. D., Robertson P.K., Sego D.C.1994. Influence of Fines on the Collapse of Loose Sands. Canadian Geotechnical Journal, 31 (5): 728-739.
  • Frost J.D., Park J.Y. 2003. A Critical Assessment of the Moist Tamping Technique. Geotech. Test. J., 26 (1): 57-70.
  • Rahman M.M., Lo S., Gnanendran C.T. 2008. On equivalent granular void ratio and steady state behaviour of loose sand with fines. Canadian Geotechnical Journal, 45 (10): 1439-1456.
  • Wanatowski D., Chu J. 2008. Effect of Specimen Preparation Method on the Stress-Strain Behavior of Sand in Plane-Strain Compression Tests. Geotechnical Testing Journal, 31 (4): 308-320.
  • Sadrekarimi A., Olson S.M. 2012. Effect Effect of sample-preparation method on critical-state behavior of sands. Geotechnical Testing Journal, 35 (4): 1-15.
  • Ladd R.S. 1978. Preparing test specimens using under compaction, Geotechnical Testing Journal, ASTM, 1 (1): 16-23.
  • Belkhatir M., Arab A., Missoum H., Della N., Schanz T. 2011. Laboratory study on the liquefaction resistance of sand–silt mixtures: effect of grading characteristics. Granular Matter, 13: 599-609.
  • Cherif Taiba A., Belkhatir M., Kadri A., Mahmoudi Y., Schanz T. 2016. Insight into the effect of granulometric characteristics on the static liquefaction susceptibility of silty sand soils. Geotechnical and Geological Engineering, 34 (1): 367-382.
  • Della A., Arab M., Belkhatir M. 2011. Effect of confining pressure and depositional method on the undrained shearing response of medium dense sand. Journal of Iberian Geology, 37 (1): 37-44.
  • Benahmed N., Nguyen T.K., Hicher P.Y., Nicolas M. 2014. An experimental investigation into the effects of low plastic fines content on the behaviour of sand / silt mixtures. European Journal of Environmental and Civil Engineering. 37-41.
  • Belhouari F., Bendani K., Missoum H., Derkaoui M. 2015. Undrained static response of loose and medium dense silty sand of Mostaganem (Northern Algeria). Arab. J. Sci. Eng., 40: 1327-1342.
  • Mahmoudi Y., Cherif Taiba A., Belkhatir M., Schanz T. 2016. Experimental Investigation on Undrained Shear Behavior of Overconsolidated Sand–silt Mixtures: Effect of Sample Reconstitution. Geotechnical Testing Journal, 39 (3): 515-523.
  • Karim M.E., Alam J. 2017. Effect of nonplastic silt content on undrained shear strength of sand-silt mixtures. Int J Geo-Engine
There are 77 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Muhammed Mahmudi 0000-0002-3937-3571

Devrim Erdoğan

Publication Date June 7, 2021
Submission Date January 8, 2021
Acceptance Date April 21, 2021
Published in Issue Year 2021

Cite

IEEE M. Mahmudi and D. Erdoğan, “İnce Dane İçeriğinin Siltli Kum Zeminlerin Drenajsız Kayma Dayanımı Davranışı ve Durağan Durum Çizgisi Üzerindeki Etkisi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 2, pp. 507–520, 2021, doi: 10.17798/bitlisfen.856805.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS