Research Article
BibTex RIS Cite

Determination of Possible Maximum Critical Transition Temperatures with Empirical Model Depending on Structural Disorders-Defects for Bi2.1Sr2.0Ca1.1Cu2.0Oy System

Year 2021, , 393 - 402, 07.06.2021
https://doi.org/10.17798/bitlisfen.873698

Abstract

In this study, we find a strong link depending on the preparation annealing ambient conditions between structural disorders-defects and characteristic transition temperature parameters (offset, Tc offset and onset, Tc onset) of bulk Bi2.1Sr2.0Ca1.1Cu2.0Oy system for the first time. The superconducting samples are prepared at various annealing temperatures intervals 830°C -850°C with the temperature step of 10°C for annealing time ranging between 24 h and 48 h via traditional solid-state reaction route. The temperature-dependent resistivity measurements are conducted at temperature range of 30-140 K. The most ideal annealing ambient is obtained to be the combination of annealing temperature of 840 °C and annealing time of 24 h because of the enhancement in the formation possibility of strong cooper-pairs and optimization of itinerant charge carrier concentrations in the valence band. Similarly, the positive contributions are observed in the overlapping mechanism of wave functions between Cu-3d and O-2p electrons and especially logarithmic distribution of electronic state densities. The optimum annealing ambient makes the Bi-2212 system refine the structural problems and especially connectivity between the grains in the crystal structure. Conversely, the excess annealing ambient leads to increase considerably the grain misorientation, defects and grain boundary couplings due to the induced permanent problems in the crystal system. The highest correlated model shows that the Bi-2212 superconducting compounds with the minimum structural disorders in the short-range-ordered antiferromagnetic Cu-O2 layers exhibit the maximum Tc onset and Tc offset values of about 85.347 K (R2adj=0.9882) and 87.421 K (R2adj=0. 97465).

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Oh S.Y., Kim H.R., Jeong Y.H., Hyun O.B., Kim C.J. 2007. Joining of Bi-2212 high-Tc superconductors and metals using indium solders. Physica C: Superconductivity and its applications, 463: 464-467.
  • Hodge J.D., Muller H., Applegate D.S., Huang Q. 1995. A resistive fault current limiter based on high temperature superconductors. Applied superconductivity, 3 (7-10): 469-482.
  • Miao H., Meinesz M., Czabai B., Parrell J., Hong S. 2008. Microstructure and J(c) Imrovements in Multifilamentary Bi-2212/Ag Wires for High Field Magnet Applications. Aip Conference Proceedings, 986: 423-430.
  • Koyama K., Kanno S., Noguchi S. 1990. Electrical, Magnetic and Superconducting Properties of the Quenched Bi2Sr2Ca1-XNdXCu2O8+y system. Jpn. J. Appl. Phys., 29: L53–L56.
  • Werfel F.N., Floegel-Delor U., Rothfeld R., Riedel T., Goebel B., Wippich D., Schirrmeister P. 2012. Superconductor bearings, flywheels and transportation. Supercond. Sci. Technol., 25: 014007.
  • Buckel W., Kleiner R. 2004. Superconductivity: Fundamentals and Applications. 2nd ed., Wiley-VCH Verlag, Weinheim.
  • Yildirim G. 2017. Determination of Optimum Diffusion Annealing Temperature for Au Surface-layered Bi-2212 Ceramics and Dependence of Transition Temperatures on Disorders. J. Alloy. Compd., 699: 247-255.
  • Onnes H.K. 2011. Further experiments with Liquid Helium. D. On the change of Electrical Resistance of Pure Metals at very low Temperatures, etc. V. The Disappearance of the resistance of mercury. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 14: 113-115.
  • Bordet P., Chaillout C., Chenavas J., Hodeau J.L., Marezio M., Karpinski J., Kaldis E. 1988. Structure determination of the new high-temperature superconductor Y2Ba4Cu7O14+x. Nature, 336: 596-599.
  • Maeda H., Tanaka Y., Fukutomi M., Asano T. 1988. A new high-Tc oxide superconductor without a rare-earth element. Jpn. J. Appl. Phys., 27: L209-L210.
  • Mousavi Ghahfarokhi S.E., Zargar Shoushtari M. 2010. Structural and physical properties of Cd-doped Bi1.64Pb0.36Sr2Ca2-xCdxCu3Oy superconductor. Physica B, 405: 4643-4649.
  • Ben Azzouz F., Zouaoui M., Mani K.D., Annabi M., Van Tendeloo G., Ben Salem M. 2006. Structure, microstructure and transport properties of B-doped YBCO system, Phys. C Supercond. Its Appl., 442: 13-19.
  • Roa J.J., Jiménez-Piqué E., Capdevila X.G., Segarra M. 2010. Nanoindentation with spherical tips of single crystals of YBCO textured by the Bridgman technique: Determination of indentation stress-strain curves. J. Eur. Ceram. Soc., 30: 1477-1482.
  • Dadras S., Dehghani S., Davoudiniya M., Falahati S. 2017. Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping. Mater. Chem. Phys., 193: 496-500.
  • Ianculescu A., Gartner M., Despax B., Bley V., Lebey Th., Gavrila R., Modreanu M. 2006.Optical characterization and microstructure of BaTiO(3) thin films obtained by RF-magnetron sputtering. Appl. Surf. Sci., 253: 344-348.
  • Sartekin N.K., Pakdil M., Yildirim G., Oz M., Turgay T. 2016. Decrement in metastability with Zr nanoparticles inserted in Bi-2223 superconducting system and working principle of hybridization mechanism. J. Mater. Sci: Mater. El., 27: 956-965.
  • Burns G. 1991. High-temperature Superconductivity: An Introduction. Academic Press, New York.
  • Awad R., Abou-Aly A.I., Abdel Gawad M.M.H., Eldeen I.G. 2012. The influence of SnO2 nano-particles addition on the vickers microhardness of (Bi, Pb)-2223 superconducting phase. J. Supercond. Nov. Magn., 25: 739-745.
  • Guner S.B., Zalaoglu Y., Turgay T., Ozyurt O., Ulgen A.T., Dogruer M., Yildirim G. 2019. A detailed research for determination of Bi/Ga partial substitution effect in Bi-2212 superconducting matrix on crucial characteristic features. J. Alloy. Compd., 772: 388-398.
  • Rao D.M., Somaiah T., Haribabu V., Venudhar Y.C. 1993. Growth-kinetics of high-Tc and low-Tc phases in Bi2-xPbxCa2Sr2Cu3Oy superconducting compounds. Cryst. Res. Technol., 28: 285-298.

Determination of Possible Maximum Critical Transition Temperatures with Empirical Model Depending on Structural Disorders-Defects for Bi2.1Sr2.0Ca1.1Cu2.0Oy System

Year 2021, , 393 - 402, 07.06.2021
https://doi.org/10.17798/bitlisfen.873698

Abstract

Bu çalışmada, katı Bi-2212 süperiletken sisteminin yapısal bozukluklar-kusurlar ve kritik geçiş sıcaklıkları (başlangıç, Tc başlangıç ve ofset, Tc ofset) arasındaki ilişki hazırlık tavlama ortam koşullarına bağlı olarak ilk kez güçlü bir ilişki kurduk. Süperiletken malzemeler, geleneksel katı hal reaksiyon yolu ile 24 saat ila 48 saat arasında değişen tavlama süresi için 10°C sıcaklık adımı ile 830 °C - 850 °C arasındaki farklı tavlama sıcaklık aralıklarında hazırlandı. Sıcaklığa bağlı direnç ölçümleri 30-140 K sıcaklık aralığında yapıldı. Tüm deneysel ve teorik bulgular, tavlama ortamının temel karakteristik özellikleri önemli bir şekilde etkilediğini göstermektedir. En iyi tavlama ortamı, aktif elektron-fonon bağlantı özelliklerinin oluşum olasılığındaki artış ve gezici yük taşıyıcı konsantrasyonlarının optimizasyonu nedeniyle 840 °C 'lik tavlama sıcaklığının ve 24 saatlik sürenin kombinasyonu olduğu bulunmuştur. Benzer şekilde, Cu-3d ve O-2p elektronları arasındaki dalga fonksiyonlarının örtüşme mekanizmasında ve özellikle elektronik durum yoğunluklarının logaritmik dağılımında pozitif katkılar gözlendi. Ayrıca, uygun koşullardaki tavlama ortamı, Bi-2212 sisteminin kristal yapı kalitesini ve kristal yapıdaki taneler arasındaki etkileşimin iyileştirilmesini sağlamaktadır. Tersine, aşırı tavlama ortamı, kristal sistemdeki kalıcı kristal yapı problemlerinin önemli ölçüde artmasına neden olur. Ayrıca, en yüksek ilişkili model, kısa menzilli antiferromanyetik Cu-O2 katmanlarındaki minimum yapısal bozukluklara sahip Bi-2212 süper iletken malzemelerinin, maksimum Tc başlangıç ve Tc ofset değerleri sırasıyla yaklaşık 85.347 K (R2adj=0.9882) ve 87.421 K (r2adj=0.97465) olarak belirlenmiştir.

Project Number

-

References

  • Oh S.Y., Kim H.R., Jeong Y.H., Hyun O.B., Kim C.J. 2007. Joining of Bi-2212 high-Tc superconductors and metals using indium solders. Physica C: Superconductivity and its applications, 463: 464-467.
  • Hodge J.D., Muller H., Applegate D.S., Huang Q. 1995. A resistive fault current limiter based on high temperature superconductors. Applied superconductivity, 3 (7-10): 469-482.
  • Miao H., Meinesz M., Czabai B., Parrell J., Hong S. 2008. Microstructure and J(c) Imrovements in Multifilamentary Bi-2212/Ag Wires for High Field Magnet Applications. Aip Conference Proceedings, 986: 423-430.
  • Koyama K., Kanno S., Noguchi S. 1990. Electrical, Magnetic and Superconducting Properties of the Quenched Bi2Sr2Ca1-XNdXCu2O8+y system. Jpn. J. Appl. Phys., 29: L53–L56.
  • Werfel F.N., Floegel-Delor U., Rothfeld R., Riedel T., Goebel B., Wippich D., Schirrmeister P. 2012. Superconductor bearings, flywheels and transportation. Supercond. Sci. Technol., 25: 014007.
  • Buckel W., Kleiner R. 2004. Superconductivity: Fundamentals and Applications. 2nd ed., Wiley-VCH Verlag, Weinheim.
  • Yildirim G. 2017. Determination of Optimum Diffusion Annealing Temperature for Au Surface-layered Bi-2212 Ceramics and Dependence of Transition Temperatures on Disorders. J. Alloy. Compd., 699: 247-255.
  • Onnes H.K. 2011. Further experiments with Liquid Helium. D. On the change of Electrical Resistance of Pure Metals at very low Temperatures, etc. V. The Disappearance of the resistance of mercury. Koninklijke Nederlandsche Akademie van Wetenschappen Proceedings, 14: 113-115.
  • Bordet P., Chaillout C., Chenavas J., Hodeau J.L., Marezio M., Karpinski J., Kaldis E. 1988. Structure determination of the new high-temperature superconductor Y2Ba4Cu7O14+x. Nature, 336: 596-599.
  • Maeda H., Tanaka Y., Fukutomi M., Asano T. 1988. A new high-Tc oxide superconductor without a rare-earth element. Jpn. J. Appl. Phys., 27: L209-L210.
  • Mousavi Ghahfarokhi S.E., Zargar Shoushtari M. 2010. Structural and physical properties of Cd-doped Bi1.64Pb0.36Sr2Ca2-xCdxCu3Oy superconductor. Physica B, 405: 4643-4649.
  • Ben Azzouz F., Zouaoui M., Mani K.D., Annabi M., Van Tendeloo G., Ben Salem M. 2006. Structure, microstructure and transport properties of B-doped YBCO system, Phys. C Supercond. Its Appl., 442: 13-19.
  • Roa J.J., Jiménez-Piqué E., Capdevila X.G., Segarra M. 2010. Nanoindentation with spherical tips of single crystals of YBCO textured by the Bridgman technique: Determination of indentation stress-strain curves. J. Eur. Ceram. Soc., 30: 1477-1482.
  • Dadras S., Dehghani S., Davoudiniya M., Falahati S. 2017. Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping. Mater. Chem. Phys., 193: 496-500.
  • Ianculescu A., Gartner M., Despax B., Bley V., Lebey Th., Gavrila R., Modreanu M. 2006.Optical characterization and microstructure of BaTiO(3) thin films obtained by RF-magnetron sputtering. Appl. Surf. Sci., 253: 344-348.
  • Sartekin N.K., Pakdil M., Yildirim G., Oz M., Turgay T. 2016. Decrement in metastability with Zr nanoparticles inserted in Bi-2223 superconducting system and working principle of hybridization mechanism. J. Mater. Sci: Mater. El., 27: 956-965.
  • Burns G. 1991. High-temperature Superconductivity: An Introduction. Academic Press, New York.
  • Awad R., Abou-Aly A.I., Abdel Gawad M.M.H., Eldeen I.G. 2012. The influence of SnO2 nano-particles addition on the vickers microhardness of (Bi, Pb)-2223 superconducting phase. J. Supercond. Nov. Magn., 25: 739-745.
  • Guner S.B., Zalaoglu Y., Turgay T., Ozyurt O., Ulgen A.T., Dogruer M., Yildirim G. 2019. A detailed research for determination of Bi/Ga partial substitution effect in Bi-2212 superconducting matrix on crucial characteristic features. J. Alloy. Compd., 772: 388-398.
  • Rao D.M., Somaiah T., Haribabu V., Venudhar Y.C. 1993. Growth-kinetics of high-Tc and low-Tc phases in Bi2-xPbxCa2Sr2Cu3Oy superconducting compounds. Cryst. Res. Technol., 28: 285-298.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Ümit Erdem 0000-0002-0480-8176

Gürcan Yıldırım 0000-0002-5177-3703

Project Number -
Publication Date June 7, 2021
Submission Date February 3, 2021
Acceptance Date April 5, 2021
Published in Issue Year 2021

Cite

IEEE Ü. Erdem and G. Yıldırım, “Determination of Possible Maximum Critical Transition Temperatures with Empirical Model Depending on Structural Disorders-Defects for Bi2.1Sr2.0Ca1.1Cu2.0Oy System”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 2, pp. 393–402, 2021, doi: 10.17798/bitlisfen.873698.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr