Research Article
BibTex RIS Cite

Ni/n-GaAs ve NiO/n-GaAs Diyotların Elektriksel Parametreleri Arasındaki İlişki

Year 2021, , 415 - 422, 07.06.2021
https://doi.org/10.17798/bitlisfen.879884

Abstract

Bu çalışmada, Ni/n-GaAs Schottky ve p-NiO/n-GaAs heteroeklem diyotları termal buharlaştırma yöntemi ile üretilmiştir. Üretilen numunelerin elektriksel özellikleri karanlıkta ve oda sıcaklığında, akım-voltaj (I-V) ve kapasitans-voltaj (C-V) ölçümleri ile incelenmiştir. Üretilen numunelerin idealite faktörü (n), engel yüksekliği (Фb) ve seri direnci (Rs), I-V ve C-V ölçümlerinden ayrı ayrı hesaplanmıştır. Ayrıca Cheung fonksiyonları yardımıyla da n, Фb ve Rs hesaplanarak sonuçların kararlılığı tesbit edilmiştir. Schottky diyot yapısının, p-n diyot yapısından daha iyi idealite faktörüne ve daha düşük engel yüksekliğine sahip olduğu belirlenmiştir.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

FYL-2018-7203

Thanks

Bu çalışma, Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından FYL-2018-7203 proje numarası ile finansal olarak desteklenmiştir.

References

  • Aydoğan Ş., Grilli M.L., Yilmaz M., Çaldiran Z., Kaçuş H. 2020. A facile growth of spray based ZnO films and device performance investigation for Schottky diodes: Determination of interface state density distribution. Journal of Alloys and Compounds, 708: 55-66.
  • Duman S., Ejderha K., Orak I., Yıldırım N., Turut A. 2020. Temperature dependence of interface state density distribution determined from conductance-frequency measurements in Ni/n-GaAs/Al diode. Journal of Materials Science: Materials in Electronics, 31 (23): 21260-21271.
  • Kacus H., Yilmaz M., Kocyigit A., Incekara U., Aydogan S., 2020. Optoelectronic properties of Co/pentacene/Si MIS heterojunction photodiode. Physica B: Physics of Condensed Matter, 597: 412408.
  • Karataş Ş. 2020. Temperature and voltage dependence C-V and G/w-V characteristics in Au/n-type GaAs metal-semiconductor structures and the source of negative capacitance. Journal of Materials Science: Materials in Electronics, https://doi.org/10.1007/s10854-020-04850-1.
  • Namini A.S., Asl M.S., Givi G.P., Delbari S.A., Farazin J., Altındal Ş., Kalandaragh Y.A. 2020. On the electrical characteristics of Al/p-Si diodes with and without (PVP:Sn-TeO2) interlayer using current-voltage (I-V) measurements. Applied Physics A, 126935.
  • Özdemir M.C., Sevgili Ö., Orak İ., Turut A. 2020. Arayüzey doğal oksit tabakalı Al/p-Si/Al yapıların dielektrik karakteristiklerine ölçüm frekanslarının etkileri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (1): 91-100.
  • Taha H., İbrahim K., Rahman M.M., Henry D.J., Yin C.Y., Veder J.P., Amri A., Zhao X., Jiang Z.T. 2020. Sol-gel derived ITO based bi-layer and tri-layer thin film coatings for organic solar cells applications, Applied Surface Science, 530: 147164.
  • Al-Ghamdi A.A., Abdelwahab M.S., Farghali A.A., Hasan P.M.Z. 2016. Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films. Materials Research Bulletin, 75: 71-77.
  • Chrissanthopoulos A., Baskoutas S., Bouropoulos N., Dracopoulos V., Poulopoulos P., Yannopoulos S.N. 2011. Synthesis and characterization of ZnO/NiO p-n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photonics and Nanostructures, 9: 132-139.
  • Manjunath V., Bimli S., Parmar K.H., Shirage P.M., Devan R.S. 2019. Oxidized nickel films as highly transparent HTLs for inverted planar perovskite solar cells. Solar Energy, 193: 387-394.
  • Patel M., Kim H.S., Kim J., Yun J.H., Kim S.J., Choi E.H., Park H.H. 2017. Excitonic metal oxide heterojunction NiO/ZnO solar cells for all transparent modüle integration. Solar Energy Materials and Solar Cells, 170: 246-253.
  • Park S.Y., Kim H.R., Kang Y.J., Kim D.H., Kang J.W. 2010. Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer. Solar Energy Materials and Solar Cells, 94: 2332-2336.
  • Haider A.J., Al-Anbari R., Sami H.M., Haider M.J. 2019. Photocatalytic activity of nickel oxide. Journal of Materials Research and Technology, 8 (3): 2802-2808.
  • Gupta R.K., Hendi A.A., Cavas M., Al-Ghamdi A.A., Al-Hartomy O.A., Aloraini R.H., El-Tantawy F., Yakuphanoglu F. 2014. Improvement of photoresponse properties of NiO/p-Si photodiodes by copper dopant. Physica E, 56: 288-295.
  • Akinkuade S., Mwankemwa B., Nel J., Meyer W. 2018. Structural, optical and electrical characteristics of nickel oxide thin films synthesised through chemical processing method. Physica B, 535: 24-28.
  • Gil M.M., Monroy M.I.P., Leal M.C., German D.C., Fontecha A.G., Lopez M.A.Q., Lerma M.S. 2017. Influence of annealing temperature on nickel oxide thin films grown by chemical bath deposition. Materials Science in Semiconductor Processing. 72: 37-45.
  • Chen S.C., Wen C.K., Kuo T.Y., Peng W.C., Lin H.C. 2014 Characterization and properties of NiO films produced by rf magnetron sputtering with oxygen ion source assistance. Thin Solid Films, 572: 51-55.
  • Wang H., Wu G., Cai X.P., Zhao Y., Shi Z.F., Wang J., Xia X.C., Dong X., Zhang B.L., Ma Y., Du G.T. 2012. Effect of growth temperature on structure and optical characters of NiO films fabricated by PA-MOCVD. Vacuum, 86: 2044-2047.
  • Gavale H.S., Wagh M.S., Gosavi S.R. 2019. Band gap engineering in spray pyrolysis grown nanocyristalline NiO thin films by Fe doping. Journal of Nano and Electronic Physics, 11 (4): 04015.
  • Guillen C., Herrero J. 2019. Transparent and p-type NixO thin films obtained by reactive DC sputtering at room temperature. Materials Research Express, 6: 096410.
  • Patel K.J., Desai M.S., Panchal C.J., Rehani B. 2011. p-type transparent NiO thin films by e-beam evaporation techniques. Journal of Nano and Electronic Physics, 3 (1): 376-382.
  • Ozkartal A. 2019. Characterization of the ITO/p-Si/Al contacts produced by thermal evaporation. Vacuum, 168: 108799.
  • Özmenteş R., Temirci C., Ozkartal A., Ejderha K., Yildirim N. 2018. Characterization of CuO/n-Si heterojunction solar cells produced by thermal evaporation. Materials Science-Poland, 36 (4): 668-674.
  • Jayavel P., Santhakumar K., Kumar J. 2002. Studies on the proton irradiation induced defects on Ni/n-GaAs Schottky barrier diodes. Physica B, 315: 88-95.
  • Doğan H., Korkut H., Yıldırım N., Turut A. 2007. Prediction of lateral barrier height in identically prepared Ni/n-type GaAs Schottky barrier diodes. Applied Surface Science, 253: 7467-7470.
  • Melebaev D., Melebaeva G.D., Rud V.Y., Rud Y.V. 2009. Photosensitivity of the Ni/n-GaAs Schottky barriers. Semiconductors, 43 (1): 29-32.
  • Aldemir D.A., Kökce A., Özdemir Ö.F. 2012. Temperature dependent ideality factor and barrier height of Ni/n-GaAs/In Schottky diodes. Microelectronic Engineering, 98: 6-11.
  • Bobby A., Shiwakoti N., Sarun P.M., Verma S., Asokan K., Antony B.K. 2015. Swift heavy ion induced capacitance and dielectric properties of Ni/n-GaAs Schottky diode. Current Applied Physics, 15: 1500-1505.
  • Guzel A., Duman S., Yıldırım N., Turut A. 2016. Electronic transport of an Ni/n-GaAs diiode analysed over a wide temperatur range. Journal of Electronic Materials, 45 (6): 2008-2014.
  • Turgut G., Duman S. 2016. Sol-gel growth and characterization of a new p-NiO/n-GaAs structure. Journal of Alloys and Compounds, 664: 547-552.
  • Nuhoğlu Ç., Temirci C., Bati B., Biber M., Türüt A. 2000. Effect of thermal annealing on Co/n-LEC GaAs (Te) Schottky contacts. Solid State Communications, 115: 291-295.
  • Akın B., Altındal Ş., 2020. On the frequency and voltage dependent main electrical parameters of the Au/ZnO/n-GaAs structures at room tempereture by using various methods. Physica B: Physics of Condensed Matter, 594: 412274.
  • Ziel A. 1968. Solid State Physical Electronics. Second ed., Prentice-Hall, New Jersey.
  • Sze S.M. 1981. Physics of Semiconductor Devices. Second ed., Wiley, New York.
  • Rhoderick E.H., Williams R.H. 1978. Metal-Semiconductor Contacts. Oxford University Press.
  • Cheung S.K., Cheung N.W. 1986. Extraction of Schottky diode parameters from forward current-voltage characteristics. Applied Physics Letters, 49 (2): 85-90.
  • Nathan M., Shoshani Z., Askinazi G., Meyler B., Zolotarevski O. 1996. On the temperature dependence of the barier height and the ideality factor in high voltage Ni/n-GaAs Schottky diodes. Solid-State Electronics, 39: 1457-1462.
  • Newman N., Schilfgaarde M., Kendelwicz T., Williams M.D., Spicer W.E. 1986. Electrical study of Schottky barriers on atomically clean GaAs(110) surface. Physical Review B, 33 (2): 1146-1159.
Year 2021, , 415 - 422, 07.06.2021
https://doi.org/10.17798/bitlisfen.879884

Abstract

Project Number

FYL-2018-7203

References

  • Aydoğan Ş., Grilli M.L., Yilmaz M., Çaldiran Z., Kaçuş H. 2020. A facile growth of spray based ZnO films and device performance investigation for Schottky diodes: Determination of interface state density distribution. Journal of Alloys and Compounds, 708: 55-66.
  • Duman S., Ejderha K., Orak I., Yıldırım N., Turut A. 2020. Temperature dependence of interface state density distribution determined from conductance-frequency measurements in Ni/n-GaAs/Al diode. Journal of Materials Science: Materials in Electronics, 31 (23): 21260-21271.
  • Kacus H., Yilmaz M., Kocyigit A., Incekara U., Aydogan S., 2020. Optoelectronic properties of Co/pentacene/Si MIS heterojunction photodiode. Physica B: Physics of Condensed Matter, 597: 412408.
  • Karataş Ş. 2020. Temperature and voltage dependence C-V and G/w-V characteristics in Au/n-type GaAs metal-semiconductor structures and the source of negative capacitance. Journal of Materials Science: Materials in Electronics, https://doi.org/10.1007/s10854-020-04850-1.
  • Namini A.S., Asl M.S., Givi G.P., Delbari S.A., Farazin J., Altındal Ş., Kalandaragh Y.A. 2020. On the electrical characteristics of Al/p-Si diodes with and without (PVP:Sn-TeO2) interlayer using current-voltage (I-V) measurements. Applied Physics A, 126935.
  • Özdemir M.C., Sevgili Ö., Orak İ., Turut A. 2020. Arayüzey doğal oksit tabakalı Al/p-Si/Al yapıların dielektrik karakteristiklerine ölçüm frekanslarının etkileri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (1): 91-100.
  • Taha H., İbrahim K., Rahman M.M., Henry D.J., Yin C.Y., Veder J.P., Amri A., Zhao X., Jiang Z.T. 2020. Sol-gel derived ITO based bi-layer and tri-layer thin film coatings for organic solar cells applications, Applied Surface Science, 530: 147164.
  • Al-Ghamdi A.A., Abdelwahab M.S., Farghali A.A., Hasan P.M.Z. 2016. Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films. Materials Research Bulletin, 75: 71-77.
  • Chrissanthopoulos A., Baskoutas S., Bouropoulos N., Dracopoulos V., Poulopoulos P., Yannopoulos S.N. 2011. Synthesis and characterization of ZnO/NiO p-n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photonics and Nanostructures, 9: 132-139.
  • Manjunath V., Bimli S., Parmar K.H., Shirage P.M., Devan R.S. 2019. Oxidized nickel films as highly transparent HTLs for inverted planar perovskite solar cells. Solar Energy, 193: 387-394.
  • Patel M., Kim H.S., Kim J., Yun J.H., Kim S.J., Choi E.H., Park H.H. 2017. Excitonic metal oxide heterojunction NiO/ZnO solar cells for all transparent modüle integration. Solar Energy Materials and Solar Cells, 170: 246-253.
  • Park S.Y., Kim H.R., Kang Y.J., Kim D.H., Kang J.W. 2010. Organic solar cells employing magnetron sputtered p-type nickel oxide thin film as the anode buffer layer. Solar Energy Materials and Solar Cells, 94: 2332-2336.
  • Haider A.J., Al-Anbari R., Sami H.M., Haider M.J. 2019. Photocatalytic activity of nickel oxide. Journal of Materials Research and Technology, 8 (3): 2802-2808.
  • Gupta R.K., Hendi A.A., Cavas M., Al-Ghamdi A.A., Al-Hartomy O.A., Aloraini R.H., El-Tantawy F., Yakuphanoglu F. 2014. Improvement of photoresponse properties of NiO/p-Si photodiodes by copper dopant. Physica E, 56: 288-295.
  • Akinkuade S., Mwankemwa B., Nel J., Meyer W. 2018. Structural, optical and electrical characteristics of nickel oxide thin films synthesised through chemical processing method. Physica B, 535: 24-28.
  • Gil M.M., Monroy M.I.P., Leal M.C., German D.C., Fontecha A.G., Lopez M.A.Q., Lerma M.S. 2017. Influence of annealing temperature on nickel oxide thin films grown by chemical bath deposition. Materials Science in Semiconductor Processing. 72: 37-45.
  • Chen S.C., Wen C.K., Kuo T.Y., Peng W.C., Lin H.C. 2014 Characterization and properties of NiO films produced by rf magnetron sputtering with oxygen ion source assistance. Thin Solid Films, 572: 51-55.
  • Wang H., Wu G., Cai X.P., Zhao Y., Shi Z.F., Wang J., Xia X.C., Dong X., Zhang B.L., Ma Y., Du G.T. 2012. Effect of growth temperature on structure and optical characters of NiO films fabricated by PA-MOCVD. Vacuum, 86: 2044-2047.
  • Gavale H.S., Wagh M.S., Gosavi S.R. 2019. Band gap engineering in spray pyrolysis grown nanocyristalline NiO thin films by Fe doping. Journal of Nano and Electronic Physics, 11 (4): 04015.
  • Guillen C., Herrero J. 2019. Transparent and p-type NixO thin films obtained by reactive DC sputtering at room temperature. Materials Research Express, 6: 096410.
  • Patel K.J., Desai M.S., Panchal C.J., Rehani B. 2011. p-type transparent NiO thin films by e-beam evaporation techniques. Journal of Nano and Electronic Physics, 3 (1): 376-382.
  • Ozkartal A. 2019. Characterization of the ITO/p-Si/Al contacts produced by thermal evaporation. Vacuum, 168: 108799.
  • Özmenteş R., Temirci C., Ozkartal A., Ejderha K., Yildirim N. 2018. Characterization of CuO/n-Si heterojunction solar cells produced by thermal evaporation. Materials Science-Poland, 36 (4): 668-674.
  • Jayavel P., Santhakumar K., Kumar J. 2002. Studies on the proton irradiation induced defects on Ni/n-GaAs Schottky barrier diodes. Physica B, 315: 88-95.
  • Doğan H., Korkut H., Yıldırım N., Turut A. 2007. Prediction of lateral barrier height in identically prepared Ni/n-type GaAs Schottky barrier diodes. Applied Surface Science, 253: 7467-7470.
  • Melebaev D., Melebaeva G.D., Rud V.Y., Rud Y.V. 2009. Photosensitivity of the Ni/n-GaAs Schottky barriers. Semiconductors, 43 (1): 29-32.
  • Aldemir D.A., Kökce A., Özdemir Ö.F. 2012. Temperature dependent ideality factor and barrier height of Ni/n-GaAs/In Schottky diodes. Microelectronic Engineering, 98: 6-11.
  • Bobby A., Shiwakoti N., Sarun P.M., Verma S., Asokan K., Antony B.K. 2015. Swift heavy ion induced capacitance and dielectric properties of Ni/n-GaAs Schottky diode. Current Applied Physics, 15: 1500-1505.
  • Guzel A., Duman S., Yıldırım N., Turut A. 2016. Electronic transport of an Ni/n-GaAs diiode analysed over a wide temperatur range. Journal of Electronic Materials, 45 (6): 2008-2014.
  • Turgut G., Duman S. 2016. Sol-gel growth and characterization of a new p-NiO/n-GaAs structure. Journal of Alloys and Compounds, 664: 547-552.
  • Nuhoğlu Ç., Temirci C., Bati B., Biber M., Türüt A. 2000. Effect of thermal annealing on Co/n-LEC GaAs (Te) Schottky contacts. Solid State Communications, 115: 291-295.
  • Akın B., Altındal Ş., 2020. On the frequency and voltage dependent main electrical parameters of the Au/ZnO/n-GaAs structures at room tempereture by using various methods. Physica B: Physics of Condensed Matter, 594: 412274.
  • Ziel A. 1968. Solid State Physical Electronics. Second ed., Prentice-Hall, New Jersey.
  • Sze S.M. 1981. Physics of Semiconductor Devices. Second ed., Wiley, New York.
  • Rhoderick E.H., Williams R.H. 1978. Metal-Semiconductor Contacts. Oxford University Press.
  • Cheung S.K., Cheung N.W. 1986. Extraction of Schottky diode parameters from forward current-voltage characteristics. Applied Physics Letters, 49 (2): 85-90.
  • Nathan M., Shoshani Z., Askinazi G., Meyler B., Zolotarevski O. 1996. On the temperature dependence of the barier height and the ideality factor in high voltage Ni/n-GaAs Schottky diodes. Solid-State Electronics, 39: 1457-1462.
  • Newman N., Schilfgaarde M., Kendelwicz T., Williams M.D., Spicer W.E. 1986. Electrical study of Schottky barriers on atomically clean GaAs(110) surface. Physical Review B, 33 (2): 1146-1159.
There are 38 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Abdullah Özkartal 0000-0002-1556-6141

Dheyab Thaer Noori This is me 0000-0003-2856-9883

Project Number FYL-2018-7203
Publication Date June 7, 2021
Submission Date February 14, 2021
Acceptance Date April 16, 2021
Published in Issue Year 2021

Cite

IEEE A. Özkartal and D. Thaer Noori, “Ni/n-GaAs ve NiO/n-GaAs Diyotların Elektriksel Parametreleri Arasındaki İlişki”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 2, pp. 415–422, 2021, doi: 10.17798/bitlisfen.879884.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS