Research Article
BibTex RIS Cite

Structural-crystalline, optical, topographical properties of ZnO thin film produced in presence of various oxygen

Year 2021, , 423 - 431, 07.06.2021
https://doi.org/10.17798/bitlisfen.886060

Abstract

Farklı oksijen varlığında üretilen ZnO ince filmlerin büyüme koşullarındaki değişiklikler, filmlerin kristal, yüzey özellikleri ve soğurma özellikleri gibi önemli özellikleri üzerindeki değişiklikler incelenmiş ve raporlanmıştır. XRD deneysel sonuçlarından, filmlere uyguladığımız oksijenin filmlerin kristal yapı değişikliklerinde (tane boyutu, gerinim değeri, dislokasyon yoğunluğu vb.) rol oynadığı anlaşılmaktadır. En yüksek RMS pürüzlülük değeri 8.58 nm olarak akışsız filme karşılık gelir, en düşük RMS pürüzlülük değeri 1.08 nm ile 1 sccm akışlı filme karşılık gelir. AFM, üretilen filmlerde nano yapılı, sıkı paketlenmiş, tanecik özellikli filmler elde edildiğini kanıtladı. Yapılan UV analizinden çıkan sonuç, filme uygulanan oksijenin optik bant aralığı değerlerinde (yaklaşık 3.30-3.32 eV aralığında) küçük değişikliklere neden olduğudur. 3 sccm oksijen durumu dışında, elde edilen tüm filmler sıkıca paketlenmiş, tanecik yapılı ve neredeyse homojen olan ve nano özelliği açıkça görüldü. Elde edilen tüm sonuçlar, ZnO film işleminde uygulanan oksijenin filmin fiziksel özelliklerinde bir takım değişikliklere neden olduğunu ve bunun film kalitesine etki ettiğini göstermektedir ve bu sonuçların ZnO kullanan cihazların üretimine katkı sağlayabileceği görülmüştür

References

  • Jin C., Hao N., Xu Z., Trase I., Nie Y., Dong L., Zhang J.X.J. 2020. Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sensors and Actuators A: Physical, 305: 111912.
  • Zhang Y., Zhao X., Chen J., Li S., Yang W., Fang X. 2020. Self-Polarized BaTiO3 for Greatly Enhanced Performance of ZnO UV Photodetector by Regulating the Distribution of Electron Concentration. Advanced Functional Materials, 30 (5): 1907650.
  • Bu F., Shen W., Zhang X., Wang Y., Belfiore L.A., Tang J. 2020. Hybrid ZnO Electron Transport Layer by Down Conversion Complexes for Dual Improvements of Photovoltaic and Stable Performances in Polymer Solar Cells. Nanomaterials, 10 (1): 80.
  • Singh S.P., Sharma S.K., Kim D.Y. 2020. Carrier mechanism of ZnO nanoparticles-embedded PMMA nanocomposite organic bistable memory device. Solid State Sciences, 99: 106046.
  • Al Dahoudi N. 2014. Comparative study of highly dense aluminium- and gallium-doped zinc oxide transparent conducting sol-gel thin films. Bulletin of Materials Science, 37 (6): 1243-1248.
  • Muiva C.M., Sathiaraj T.S., Maabong K. 2011. Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceramics International, 37 (2): 555-560.
  • Lee J.-H., Ko K.-H., Park B.-O. 2003. Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. Journal of Crystal Growth, 247 (1): 119-125.
  • Sahal M., Hartiti B., Ridah A., Mollar M., Marí B. 2008. Structural, electrical and optical properties of ZnO thin films deposited by sol–gel method. Microelectronics Journal, 39 (12): 1425-1428.
  • Bedrouni M., Kharroubi B., Ouerdane A., Bouslama M.H., Guezzoul M.H., Caudano Y., Abdelkrim M. 2021. Effect of indium incorporation, stimulated by UHV treatment, on the chemical, optical and electronic properties of ZnO thin film. Optical Materials, 111: 110560.
  • Hou B., Li L., Li X., Li Q., Li J., Wang H., Huang J. 2021. Influence of Bi3+ doping on microstructure and photoelectric properties of ZnO thin film. Chemical Physics Letters, 763: 138174.
  • Selman A.M., Hassan Z., Husham M. 2014. Structural and photoluminescence studies of rutile TiO2 nanorods prepared by chemical bath deposition method on Si substrates at different pH values. Measurement, 56: 155-162.
  • http://www.crystallography.net/cod/index.php (Access Date: 20.02.2021).
  • Patterson A.L. 1939. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56 (10): 978-982.
  • Thompson C.V. 1990. Grain Growth in Thin Films. Annual Review of Materials Science, 20 (1): 245-268.
  • Solookinejad G., Rozatian A.S.H., Habibi M.H. 2016. Zinc Oxide Thin Films Characterization, AFM, XRD and X-ray Reflectivity. Experimental Techniques, 40 (4): 1297-1306.
  • O'Brien S., Koh L.H.K., Crean G.M. 2008. ZnO thin films prepared by a single step sol–gel process. Thin Solid Films, 516 (7): 1391-1395.
  • Kim D., Woo H.K., Lee Y.M., Kim Y., Choi J.-H., Oh S.J. 2020. Controllable doping and passivation of ZnO thin films by surface chemistry modification to design low-cost and high-performance thin film transistors. Applied Surface Science, 509: 145289.
  • Srikant V., Clarke D.R. 1998. On the optical band gap of zinc oxide. Journal of Applied Physics, 83 (10): 5447-5451.

Structural-crystalline, optical, topographical properties of ZnO thin film produced in presence of various oxygen

Year 2021, , 423 - 431, 07.06.2021
https://doi.org/10.17798/bitlisfen.886060

Abstract

Changes in growth conditions of ZnO thin films produced in the presence of different oxygen, changes in important properties such as crystal, surface properties, and absorption properties of the films were examined and reported. It is inferred from the XRD experimental results that the oxygen we applied to the films plays a role in the crystal structure changes of the films (grain size, strain value, dislocation density etc.) The highest RMS roughness value is 8.58 nm, the lowest RMS roughness value is 1.08 nm corresponding to non-flow and 1 sccm flow film respectively. AFM proved that films with nano-structured, tightly packed, grain properties were obtained in the produced films. Inference from UV analysis made is that the oxygen applied to the film caused small changes in the optical band gap values (in the range of about 3.30-3.32 eV). Except for 3 sccm oxygen state, all the films obtained were tightly packed, granulated and almost homogeneous and the nano property was clearly seen. All the results obtained show that the oxygen applied in the ZnO film process causes some changes in the physical properties of the film and this has an effect on the film quality and it is seen that these results can contribute to the production of the devices using ZnO.

References

  • Jin C., Hao N., Xu Z., Trase I., Nie Y., Dong L., Zhang J.X.J. 2020. Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sensors and Actuators A: Physical, 305: 111912.
  • Zhang Y., Zhao X., Chen J., Li S., Yang W., Fang X. 2020. Self-Polarized BaTiO3 for Greatly Enhanced Performance of ZnO UV Photodetector by Regulating the Distribution of Electron Concentration. Advanced Functional Materials, 30 (5): 1907650.
  • Bu F., Shen W., Zhang X., Wang Y., Belfiore L.A., Tang J. 2020. Hybrid ZnO Electron Transport Layer by Down Conversion Complexes for Dual Improvements of Photovoltaic and Stable Performances in Polymer Solar Cells. Nanomaterials, 10 (1): 80.
  • Singh S.P., Sharma S.K., Kim D.Y. 2020. Carrier mechanism of ZnO nanoparticles-embedded PMMA nanocomposite organic bistable memory device. Solid State Sciences, 99: 106046.
  • Al Dahoudi N. 2014. Comparative study of highly dense aluminium- and gallium-doped zinc oxide transparent conducting sol-gel thin films. Bulletin of Materials Science, 37 (6): 1243-1248.
  • Muiva C.M., Sathiaraj T.S., Maabong K. 2011. Effect of doping concentration on the properties of aluminium doped zinc oxide thin films prepared by spray pyrolysis for transparent electrode applications. Ceramics International, 37 (2): 555-560.
  • Lee J.-H., Ko K.-H., Park B.-O. 2003. Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. Journal of Crystal Growth, 247 (1): 119-125.
  • Sahal M., Hartiti B., Ridah A., Mollar M., Marí B. 2008. Structural, electrical and optical properties of ZnO thin films deposited by sol–gel method. Microelectronics Journal, 39 (12): 1425-1428.
  • Bedrouni M., Kharroubi B., Ouerdane A., Bouslama M.H., Guezzoul M.H., Caudano Y., Abdelkrim M. 2021. Effect of indium incorporation, stimulated by UHV treatment, on the chemical, optical and electronic properties of ZnO thin film. Optical Materials, 111: 110560.
  • Hou B., Li L., Li X., Li Q., Li J., Wang H., Huang J. 2021. Influence of Bi3+ doping on microstructure and photoelectric properties of ZnO thin film. Chemical Physics Letters, 763: 138174.
  • Selman A.M., Hassan Z., Husham M. 2014. Structural and photoluminescence studies of rutile TiO2 nanorods prepared by chemical bath deposition method on Si substrates at different pH values. Measurement, 56: 155-162.
  • http://www.crystallography.net/cod/index.php (Access Date: 20.02.2021).
  • Patterson A.L. 1939. The Scherrer Formula for X-Ray Particle Size Determination. Physical Review, 56 (10): 978-982.
  • Thompson C.V. 1990. Grain Growth in Thin Films. Annual Review of Materials Science, 20 (1): 245-268.
  • Solookinejad G., Rozatian A.S.H., Habibi M.H. 2016. Zinc Oxide Thin Films Characterization, AFM, XRD and X-ray Reflectivity. Experimental Techniques, 40 (4): 1297-1306.
  • O'Brien S., Koh L.H.K., Crean G.M. 2008. ZnO thin films prepared by a single step sol–gel process. Thin Solid Films, 516 (7): 1391-1395.
  • Kim D., Woo H.K., Lee Y.M., Kim Y., Choi J.-H., Oh S.J. 2020. Controllable doping and passivation of ZnO thin films by surface chemistry modification to design low-cost and high-performance thin film transistors. Applied Surface Science, 509: 145289.
  • Srikant V., Clarke D.R. 1998. On the optical band gap of zinc oxide. Journal of Applied Physics, 83 (10): 5447-5451.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Asim Mantarcı 0000-0001-8369-3559

Publication Date June 7, 2021
Submission Date February 24, 2021
Acceptance Date May 3, 2021
Published in Issue Year 2021

Cite

IEEE A. Mantarcı, “Structural-crystalline, optical, topographical properties of ZnO thin film produced in presence of various oxygen”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 2, pp. 423–431, 2021, doi: 10.17798/bitlisfen.886060.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr