Research Article
BibTex RIS Cite

The Effects of Coriandrum sativum L. and Chaerophyllum macropodum Boiss. (Apiaceae) on human plasma angiotensin-converting enzyme (ACE) in vitro

Year 2021, , 710 - 718, 17.09.2021
https://doi.org/10.17798/bitlisfen.894569

Abstract

Hipertansiyon dünya çapında çok önemli bir problemdir. Anjiyotensin dönüştürücü enzimin (ACE, EC.3.4.15.1.) inhibisyonu, hipertansiyon tedavisinin temeli olarak kabul edilir. Ancak sentetik ACE inhibitörlerinin bazı yan etkileri vardır. Bu nedenle, doğal ACE inhibitörleri geliştirmek için birçok çalışma yapılmaktadır. Bu sebeple, bu çalışma, Apiaceae'nin iki üyesi olan Coriandrum sativum ve Chaerophyllum macropodum'un insan plazma ACE'si üzerine potansiyel inhibitör etkilerini belirlemek için tasarlanmıştır. Bu amaçla, bitkilerin su ekstraktları kullanılmıştır. ACE inhibisyon aktivitesi spektrofotometrik olarak tespit edildi. Her iki bitki özütü de ACE aktivitesi üzerinde inhibe edici etki gösterdi. Elde edilen sonuçlar, Coriandrum sativum ve Chaerophyllum macropodum'un sırasıyla 0.7 mg/mL ve 1.14 mg/mL IC50 değeriyle insan plazma ACE üzerine inhibe edici etkilere sahip olduğunu gösterdi. İnhibisyon tipini belirlemek için Lineweaver-Burk grafiği kullanıldı. İnhibisyon türleri geri dönüşümlü, yarışmasız inhibisyon olarak bulundu. Elde edilen sonuçlara göre, Coriandrum sativum ve Chaerophyllum macropodum’un ACE inhibisyon kapasitesine sahip, kan basıncını etkin bir şekilde dengelemek için kullanılabilen, değerli fonksiyonel gıdalardır.

Supporting Institution

Bitlis Eren Üniversitesi Bilimsel Araştırma Koordinatörlüğü (BEBAP)

Project Number

BEBAP 2019.002

References

  • Bhagani S., Kapil V., Lobo M.D. 2018. Hypertension. Medicine. 46, 509–515.
  • Wijesekara I., Kim S.K. 2010. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Marine Drugs, 8(4), 1080-1093.
  • Corvol P., Williams T.A., Soubrier F. 1995. Peptidyl dipeptidase A: angiotensin I converting enzyme. Methods Enzymology, 248, 283-305.
  • Patten G.S., Abeywardena M.Y., Bennett L.E. 2016. Inhibition of angiotensin converting enzyme, angiotensin II receptor blocking and blood pressure lowering bioactivity across plant families. Critical Reviews in Food Science and Nutrition, 56(2):181-214.
  • Onat T, Emerk K, Sözmen E, 2006. İnsan Biyokimyası, 2th ed., Palme Yayıncılık, Ankara
  • Li G.H., Le G.W., Shi Y.H., Shrestha S. 2003. Angiotensin I – converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research, 24, 469–486.
  • Khong T.K., Adeyeye E. 2019. First-line drugs for hypertension. Drug and Therapeutics Bulletin, 57,135-136.
  • Chen ZY, Peng C, Jiao R, Wong YM, Yang N, Huang Y, 2009. Antihypertensive nutraceuticals and functional foods. Journal of Agricultural and Food Chemistry, 57, 4485–4499.
  • Azemi W.A.W.M., Samsudin N.A., Halim N.R.A., Sarbon N.M. 2016. Bioactivity of enzymatically prepared eel (Monopterus sp.) protein hydrolysate at different molecular weights. International Food Research Journal, 24 (2), 571–578.
  • Baharuddin N.A., Halim N.R.A., Sarbon N.M. 2016. Effect of degree of hydrolysis (DH) on the functional properties and angiotensin I-converting enzyme (ACE) inhibitory activity of eel (Monopterus sp.) protein hydrolysate. International Food Research Journal, 23(4), 1424–1431.
  • Rho S.J., Lee J.S., Chung Y.I., Kim Y.W., Lee H.G. 2009. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochemistry, 44, 490–493.
  • Hyun S.K., Lee H., Kang S.S., Chung H.Y., Choi J.S. 2009. Inhibitory activities of Cassia tora and its anthraquinone constituents on angiotensin-converting enzyme. Phytotherapy Research, 23, 178–184.
  • Kwon E.K., Lee D.Y., Hyungjae L., Kim D.O.K., Baek N.I.N., Kim Y.E., Kim H.Y. 2010. Flavonoids from the buds of Rosa damascena inhibit the activity of 3- hydroxy-3-methylglutaryl-coenzyme a reductase and angiotensin I-converting enzyme. Journal of Agricultural and Food Chemistry, 58, 882–886.
  • Gür T., Karahan F., Başı Z., Türkoğlu V. 2020. The Determination of Inhibition Effect of Extracts of Thymbra sintenisii Bornm. et Aznav. Subsp on Angiotensin Converting Enzyme. Journal of the Institute of Science and Technology, 10(3): 1848-1856.
  • Sayed-Ahmad B., Talou T., Saad Z., Hijazi A., Merah O., 2017. The Apiaceae: Ethnomedicinal family as source for industrial uses. Industrial Crops and Products,109: 661-671.
  • Zengin G., Mahomoodally M.F., Paksoy M.Y., Carene Picot-Allain, Glamocilja J., Sokovic M., Diuzheva A., Jekő J., Cziáky Z., Rodrigues M.J., Sinan K.I., Custodio. 2019. Phytochemical characterization and bioactivities of five Apiaceae species: Natural sources for novel ingredients. Industrial Crops and Products,135:107-121.
  • Özhatay N., Akalın E., Özhatay E., Ünlü S. 2009. Rare and endemic taxa of Apiaceae in Turkey and their conservation significance. Journal of Pharmacy of İstanbul University, 40: 1–9.
  • Ngahang Kamte S.L., Ranjbarian F., Cianfaglione K., Sut S., Dall’Acqua S., Bruno M., Afshar F.H., Iannarelli R., Benelli G., Cappellacci L., Hofer A., Maggi F., Petrelli R., 2018. Identification of highly effective antitrypanosomal compounds in essential oils from the Apiaceae family. Ecotoxicology and Environmental Safety,156:154-165.
  • Demirci B, Koşar M, Demirci F, Dinç M, Başer KHC, 2007. Antimicrobial and antioxidant activities of the essential oil of Chaerophyllum libanoticum Boiss. et Kotschy. Food Chemistry,105(4), 1512-1517.
  • Çoruh N., Sağdıçoğlu Celep A.G., Özgökçe F. 2007. Antioxidant properties of Prangos ferulacea (L.) Lindl., Chaerophyllum macropodum Boiss. and Heracleum persicum Desf. from Apiaceae family used as food in Eastern Anatolia and their inhibitory effects on glutathione-S-transferase. Food Chemistry,100(3),1237-1242.
  • Durmaz H., Sagun E., Tarakci Z., Ozgokçe F. 2006. Antibacterial activities of Allium vineale, Chaerophyllum macropodum and Prangos ferulacea. African Journal of Biotechnology, 5, 1795–1798.
  • Ebrahimabadi A.H., Djafari-Bidgoli Z., Mazoochi A., Kashi F.J., Batooli H. 2010. Essential oils composition, antioxidant and antimicrobial activity of the leaves and flowers of Chaerophyllum macropodum Boiss. Food Control, 21, 1173–1178.
  • Slavin J.L., Lloyd B. 2012. Health benefits of fruits and vegetables. Advances in nutrition (Bethesda, Md.), 3(4), 506–516.
  • Beyzi E., Karaman K., Gunes A., Beyzi S.B. 2017. Change in some biochemical and bioactive properties and essential oil composition of coriander seed (Coriandrum sativum L.) varieties from Turkey. Industrial Crops Products, 109, 74–78.
  • Taherian A.A., Vafaei A.A., Ameri J. 2012. Opiate system mediate the antinociceptive effects of Coriandrum sativum in mice. Iranian Journal of Pharmaceutical Research, 11(2), 679–688.
  • Aissaoui A., El-Hilaly J., Iaraili Z.H., Lyoussi B. 2008. Acute diuretic effect of continuous intravenous infusion of an aqueous extract of Coriandrum sativum L. in anesthetized rats. Journal of Ethnopharmacology, 115, 89–95.
  • Gastón M.S., Cid M.P., Vázquez A.M., Decarlini M.F., Demmel G.I., Rossi L.I., Salvatierra N.A. 2016. Sedative effect of central administration of Coriandrum sativum essential oil and its major component linalool in neonatal chicks. Pharmaceutical Biology, 54(10), 1954–1961.
  • Jiao Y., Wang X., Chen J. 2021. Biofabrication of AuNPs using Coriandrum sativum leaf extract and their antioxidant, analgesic activity. Science of the Total Environment, 767, 144914.
  • Patel D.K., Desai S.N., Devkar R.V., Ramachandran A.V. 2011. Coriandrum sativum L. aqueous extract mitigates high fat diet induced insulin resistance by controlling visceral adiposity in C57BL/6J Mice. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas, 10, 127–135.
  • Medhin D.G., Hadhazy B.P., Verzar-Petri G. 1986. Hypotensive effects of Lupinus termis and Coriandrum sativum in anaesthetized rats. Acta Pharmaceutica Hungarica, 56, 59– 63.
  • Andújar-Sánchez M., Cámara-Artigas A., Jara-Pérez V. 2003. Purification of angiotensin 1 converting enzyme from pig lung using concanavalin-A sepharose chromatography. Journal of Chromatography B, 783, 247-252.
  • Holmquist B., Bünning P., Riordan J.F. 1979. A continuous spectrophotometric assay for angiotensin converting enzyme. Analytical Biochemistry, 95:540-548.
  • Singer P.S. 2019. Updates on hypertension and new guidelines. Adv. Pediatr. 66, 66:177-187
  • Je J.Y., Park J.Y., Jung W.K., Park P.J., Kim S.K. 2005. Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas. Food Chemistry, 90 (4), 809–814.
  • Paiva L., Lima E., Neto A.I., Baptista J. 2016. Angiotensin I-converting enzyme (ACE) inhibitory activity of Fucus spiralis macroalgae and influence of the extracts storage temperature-A short report. Journal of Pharmaceutical Biomedical Analysis, 30(131), 503-507.
  • Ma T.K., Kam K.K., Yan B.P., Lam Y.Y. 2010. Renin-angiotensin aldosterone system blockade for cardiovascular diseases: current status. British Journal of Pharmacology, 160 (6), 1273–1292.
  • Lin L., Lu S., Harnly J. 2007. Detection and quantification of glycosylated flavonoid malonates in celery, Chinese celery, and celery seed by LC–DAD–ESI/ MS. Journal of Agricultural and Food Chemistry, 55, 1321–1326.
  • Atanasov A.G., Waltenberger B., Wenzig E.M.P., Linder T., Wawrosch C., Uhrin P., Temml V.., Wang L, Schwaiger S., Heiss E.H., Rollinger J.M., Schuster D., Breuss J.M., Bochkov V., Mihovilovic M.D., Kopp B., Bauer R., Dirscha V.M., Stuppner H. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnology Advances 33, 1582–1614.
  • Dias D.A., Urban S., Roessner U. 2012. A historical overview of natural products in A historical overview of natural products in drug discovery. Metabolites, 2(2),303-36.
  • Biswas D., Uddin M.M., Dizdarevic L.L., Jørgensen A., Duttaroy A.K. 2014. Inhibition of angiotensin-converting enzyme by aqueous extract of tomato. European Journal of Nutrition, 53(8), 1699–1706.
  • Hussain S.A., Panjagari N.R., Singh R.R.B., Patil G.R. 2015. Potential Herbs and Herbal Nutraceuticals: Food Applications and Their Interactions with Food Components, Critical Reviews in Food Science and Nutrition, 55(1), 94-122 .
  • Huang W.Y., Davidge S.T., Wu J. 2013. Bioactive natural constituents from food sources potential use in hypertension prevention and treatment. Critical Reviews in Food Science and Nutrition, 53(69), 615–630.
  • Liu R.H., 2003. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American Journal of Clinical Nutrition, 78(3), 517–520.
  • Goretta L.A., Ottaviani J.I., Keen C.L., Fraga C.G. 2003. Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins. FEBS (Fed. Eur. Biochem. Soc.) Letter, 555, 597–60.
  • Dong J., Xu X., Liang Y., Head R., Bennett L. 2011. Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to drug discovery. Metabolites 2, 303–336.
  • Ojeda D., Jiménez-Ferrer E., Zamilpa A., Herrera-Arellano A., Tortoriello J., Alvarez L. 2010. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin-and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. Journal of Ethnopharmacology, 127(1), 7–10.
  • Wei J.N., Liu Z.H., Zhao Y.P., Zhao L.L., Xue T.K., Lan Q.K.2019. Phytochemical and bioactive profile of Coriandrum sativum L. Food Chemistry, 286, 260-267.
  • Hussain F., Jahan N., Rahman K.U., Sultana B., Jamil S. 2018. Identification of Hypotensive Biofunctional Compounds of Coriandrum sativum and Evaluation of Their Angiotensin-Converting Enzyme (ACE) Inhibition Potential. Oxidative Medicine and Cellular Longevity. 15, 4643736.
  • Ali M.Y., Seong S.H., Jung H.A., Choi J.S. 2019. Angiotensin-I-converting enzyme inhibitory activity of coumarins from Angelica decursiva. Molecules 24 (21), 3937.
  • Hyun S.K., Oh Y.N., Kwon H.J., Kim B.W. 2013. Angiotensin converting enzyme inhibitory benzopyranoids from Angelica gigas. Food Science and Biotechnology, 22, 1741–1745.
  • Hansen K., Nyman U., Smitt U.W., Adsersen A., Gudiksen L., Rajasekharan S., Pushpangadan P.1995. In vitro screening of traditional medicines for anti-hypertensive effect based on inhibition of the angiotensin converting enzyme (ACE). Journal of Ethnopharmacology, 48:1, 43-51.
  • Simaratanamongkol A., Umehara K., Noguchi H., Panichayupakaranant P. 2014. Identification of a new angiotensin-converting enzyme (ACE) inhibitor from Thai edible plants. Food Chemistry,165: 92-97.
  • Suručić R., Kundaković T., Lakušić B., Drakul D., Milovanović S.R., Kovačević N. 2017. Variations in Chemical Composition, Vasorelaxant and Angiotensin I-Converting Enzyme Inhibitory Activities of Essential Oil from Aerial Parts of Seseli pallasii Besser (Apiaceae). Chemistry Biodiversity, 14(5). doi: 10.1002/cbdv.201600407
  • Saleem F., Sarkar D.., Ankolekar C., Shetty K. 2017. Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Industrial Crops and Products, 107,518-525.

The Effects of Coriandrum sativum L. and Chaerophyllum macropodum Boiss. (Apiaceae) on human plasma angiotensin-converting enzyme (ACE) in vitro

Year 2021, , 710 - 718, 17.09.2021
https://doi.org/10.17798/bitlisfen.894569

Abstract

Hypertension is a very important problem around the world. The inhibition of the Angiotensin-converting enzyme (ACE, EC.3.4.15.1.) is regarded as fundamental of hypertension treatment. But, synthetic ACE inhibitors have several side effects. For this reason, there are lots of studies to improve green ACE inhibitors. Therefore, this study was designed to determine the potential inhibitory effects of two members of Apiaceae, Coriandrum sativum and Chaerophyllum macropodum, on human plasma ACE. Fort this purpose, water extracts of the plants were used. ACE inhibition activity was detected spectrophotometrically. Both plant extracts showed an inhibitory effect on ACE activity. The obtained results showed that Coriandrum sativum and Chaerophyllum macropodum have inhibitory effects on human plasma ACE with an IC50 value of 0.7 mg/mL and 1.14 mg/mL, respectively. Lineweaver-Burk graph was used to determine the inhibition type. The inhibition types were found as reversible noncompetitive. According to the obtained results, Coriandrum sativum and Chaerophyllum macropodum are valuable functional food with ACE inhibition capacity which may be used to balance blood pressure efficiently.

Project Number

BEBAP 2019.002

References

  • Bhagani S., Kapil V., Lobo M.D. 2018. Hypertension. Medicine. 46, 509–515.
  • Wijesekara I., Kim S.K. 2010. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Marine Drugs, 8(4), 1080-1093.
  • Corvol P., Williams T.A., Soubrier F. 1995. Peptidyl dipeptidase A: angiotensin I converting enzyme. Methods Enzymology, 248, 283-305.
  • Patten G.S., Abeywardena M.Y., Bennett L.E. 2016. Inhibition of angiotensin converting enzyme, angiotensin II receptor blocking and blood pressure lowering bioactivity across plant families. Critical Reviews in Food Science and Nutrition, 56(2):181-214.
  • Onat T, Emerk K, Sözmen E, 2006. İnsan Biyokimyası, 2th ed., Palme Yayıncılık, Ankara
  • Li G.H., Le G.W., Shi Y.H., Shrestha S. 2003. Angiotensin I – converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutrition Research, 24, 469–486.
  • Khong T.K., Adeyeye E. 2019. First-line drugs for hypertension. Drug and Therapeutics Bulletin, 57,135-136.
  • Chen ZY, Peng C, Jiao R, Wong YM, Yang N, Huang Y, 2009. Antihypertensive nutraceuticals and functional foods. Journal of Agricultural and Food Chemistry, 57, 4485–4499.
  • Azemi W.A.W.M., Samsudin N.A., Halim N.R.A., Sarbon N.M. 2016. Bioactivity of enzymatically prepared eel (Monopterus sp.) protein hydrolysate at different molecular weights. International Food Research Journal, 24 (2), 571–578.
  • Baharuddin N.A., Halim N.R.A., Sarbon N.M. 2016. Effect of degree of hydrolysis (DH) on the functional properties and angiotensin I-converting enzyme (ACE) inhibitory activity of eel (Monopterus sp.) protein hydrolysate. International Food Research Journal, 23(4), 1424–1431.
  • Rho S.J., Lee J.S., Chung Y.I., Kim Y.W., Lee H.G. 2009. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochemistry, 44, 490–493.
  • Hyun S.K., Lee H., Kang S.S., Chung H.Y., Choi J.S. 2009. Inhibitory activities of Cassia tora and its anthraquinone constituents on angiotensin-converting enzyme. Phytotherapy Research, 23, 178–184.
  • Kwon E.K., Lee D.Y., Hyungjae L., Kim D.O.K., Baek N.I.N., Kim Y.E., Kim H.Y. 2010. Flavonoids from the buds of Rosa damascena inhibit the activity of 3- hydroxy-3-methylglutaryl-coenzyme a reductase and angiotensin I-converting enzyme. Journal of Agricultural and Food Chemistry, 58, 882–886.
  • Gür T., Karahan F., Başı Z., Türkoğlu V. 2020. The Determination of Inhibition Effect of Extracts of Thymbra sintenisii Bornm. et Aznav. Subsp on Angiotensin Converting Enzyme. Journal of the Institute of Science and Technology, 10(3): 1848-1856.
  • Sayed-Ahmad B., Talou T., Saad Z., Hijazi A., Merah O., 2017. The Apiaceae: Ethnomedicinal family as source for industrial uses. Industrial Crops and Products,109: 661-671.
  • Zengin G., Mahomoodally M.F., Paksoy M.Y., Carene Picot-Allain, Glamocilja J., Sokovic M., Diuzheva A., Jekő J., Cziáky Z., Rodrigues M.J., Sinan K.I., Custodio. 2019. Phytochemical characterization and bioactivities of five Apiaceae species: Natural sources for novel ingredients. Industrial Crops and Products,135:107-121.
  • Özhatay N., Akalın E., Özhatay E., Ünlü S. 2009. Rare and endemic taxa of Apiaceae in Turkey and their conservation significance. Journal of Pharmacy of İstanbul University, 40: 1–9.
  • Ngahang Kamte S.L., Ranjbarian F., Cianfaglione K., Sut S., Dall’Acqua S., Bruno M., Afshar F.H., Iannarelli R., Benelli G., Cappellacci L., Hofer A., Maggi F., Petrelli R., 2018. Identification of highly effective antitrypanosomal compounds in essential oils from the Apiaceae family. Ecotoxicology and Environmental Safety,156:154-165.
  • Demirci B, Koşar M, Demirci F, Dinç M, Başer KHC, 2007. Antimicrobial and antioxidant activities of the essential oil of Chaerophyllum libanoticum Boiss. et Kotschy. Food Chemistry,105(4), 1512-1517.
  • Çoruh N., Sağdıçoğlu Celep A.G., Özgökçe F. 2007. Antioxidant properties of Prangos ferulacea (L.) Lindl., Chaerophyllum macropodum Boiss. and Heracleum persicum Desf. from Apiaceae family used as food in Eastern Anatolia and their inhibitory effects on glutathione-S-transferase. Food Chemistry,100(3),1237-1242.
  • Durmaz H., Sagun E., Tarakci Z., Ozgokçe F. 2006. Antibacterial activities of Allium vineale, Chaerophyllum macropodum and Prangos ferulacea. African Journal of Biotechnology, 5, 1795–1798.
  • Ebrahimabadi A.H., Djafari-Bidgoli Z., Mazoochi A., Kashi F.J., Batooli H. 2010. Essential oils composition, antioxidant and antimicrobial activity of the leaves and flowers of Chaerophyllum macropodum Boiss. Food Control, 21, 1173–1178.
  • Slavin J.L., Lloyd B. 2012. Health benefits of fruits and vegetables. Advances in nutrition (Bethesda, Md.), 3(4), 506–516.
  • Beyzi E., Karaman K., Gunes A., Beyzi S.B. 2017. Change in some biochemical and bioactive properties and essential oil composition of coriander seed (Coriandrum sativum L.) varieties from Turkey. Industrial Crops Products, 109, 74–78.
  • Taherian A.A., Vafaei A.A., Ameri J. 2012. Opiate system mediate the antinociceptive effects of Coriandrum sativum in mice. Iranian Journal of Pharmaceutical Research, 11(2), 679–688.
  • Aissaoui A., El-Hilaly J., Iaraili Z.H., Lyoussi B. 2008. Acute diuretic effect of continuous intravenous infusion of an aqueous extract of Coriandrum sativum L. in anesthetized rats. Journal of Ethnopharmacology, 115, 89–95.
  • Gastón M.S., Cid M.P., Vázquez A.M., Decarlini M.F., Demmel G.I., Rossi L.I., Salvatierra N.A. 2016. Sedative effect of central administration of Coriandrum sativum essential oil and its major component linalool in neonatal chicks. Pharmaceutical Biology, 54(10), 1954–1961.
  • Jiao Y., Wang X., Chen J. 2021. Biofabrication of AuNPs using Coriandrum sativum leaf extract and their antioxidant, analgesic activity. Science of the Total Environment, 767, 144914.
  • Patel D.K., Desai S.N., Devkar R.V., Ramachandran A.V. 2011. Coriandrum sativum L. aqueous extract mitigates high fat diet induced insulin resistance by controlling visceral adiposity in C57BL/6J Mice. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas, 10, 127–135.
  • Medhin D.G., Hadhazy B.P., Verzar-Petri G. 1986. Hypotensive effects of Lupinus termis and Coriandrum sativum in anaesthetized rats. Acta Pharmaceutica Hungarica, 56, 59– 63.
  • Andújar-Sánchez M., Cámara-Artigas A., Jara-Pérez V. 2003. Purification of angiotensin 1 converting enzyme from pig lung using concanavalin-A sepharose chromatography. Journal of Chromatography B, 783, 247-252.
  • Holmquist B., Bünning P., Riordan J.F. 1979. A continuous spectrophotometric assay for angiotensin converting enzyme. Analytical Biochemistry, 95:540-548.
  • Singer P.S. 2019. Updates on hypertension and new guidelines. Adv. Pediatr. 66, 66:177-187
  • Je J.Y., Park J.Y., Jung W.K., Park P.J., Kim S.K. 2005. Isolation of angiotensin I converting enzyme (ACE) inhibitor from fermented oyster sauce, Crassostrea gigas. Food Chemistry, 90 (4), 809–814.
  • Paiva L., Lima E., Neto A.I., Baptista J. 2016. Angiotensin I-converting enzyme (ACE) inhibitory activity of Fucus spiralis macroalgae and influence of the extracts storage temperature-A short report. Journal of Pharmaceutical Biomedical Analysis, 30(131), 503-507.
  • Ma T.K., Kam K.K., Yan B.P., Lam Y.Y. 2010. Renin-angiotensin aldosterone system blockade for cardiovascular diseases: current status. British Journal of Pharmacology, 160 (6), 1273–1292.
  • Lin L., Lu S., Harnly J. 2007. Detection and quantification of glycosylated flavonoid malonates in celery, Chinese celery, and celery seed by LC–DAD–ESI/ MS. Journal of Agricultural and Food Chemistry, 55, 1321–1326.
  • Atanasov A.G., Waltenberger B., Wenzig E.M.P., Linder T., Wawrosch C., Uhrin P., Temml V.., Wang L, Schwaiger S., Heiss E.H., Rollinger J.M., Schuster D., Breuss J.M., Bochkov V., Mihovilovic M.D., Kopp B., Bauer R., Dirscha V.M., Stuppner H. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnology Advances 33, 1582–1614.
  • Dias D.A., Urban S., Roessner U. 2012. A historical overview of natural products in A historical overview of natural products in drug discovery. Metabolites, 2(2),303-36.
  • Biswas D., Uddin M.M., Dizdarevic L.L., Jørgensen A., Duttaroy A.K. 2014. Inhibition of angiotensin-converting enzyme by aqueous extract of tomato. European Journal of Nutrition, 53(8), 1699–1706.
  • Hussain S.A., Panjagari N.R., Singh R.R.B., Patil G.R. 2015. Potential Herbs and Herbal Nutraceuticals: Food Applications and Their Interactions with Food Components, Critical Reviews in Food Science and Nutrition, 55(1), 94-122 .
  • Huang W.Y., Davidge S.T., Wu J. 2013. Bioactive natural constituents from food sources potential use in hypertension prevention and treatment. Critical Reviews in Food Science and Nutrition, 53(69), 615–630.
  • Liu R.H., 2003. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. The American Journal of Clinical Nutrition, 78(3), 517–520.
  • Goretta L.A., Ottaviani J.I., Keen C.L., Fraga C.G. 2003. Inhibition of angiotensin converting enzyme (ACE) activity by flavan-3-ols and procyanidins. FEBS (Fed. Eur. Biochem. Soc.) Letter, 555, 597–60.
  • Dong J., Xu X., Liang Y., Head R., Bennett L. 2011. Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to drug discovery. Metabolites 2, 303–336.
  • Ojeda D., Jiménez-Ferrer E., Zamilpa A., Herrera-Arellano A., Tortoriello J., Alvarez L. 2010. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin-and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. Journal of Ethnopharmacology, 127(1), 7–10.
  • Wei J.N., Liu Z.H., Zhao Y.P., Zhao L.L., Xue T.K., Lan Q.K.2019. Phytochemical and bioactive profile of Coriandrum sativum L. Food Chemistry, 286, 260-267.
  • Hussain F., Jahan N., Rahman K.U., Sultana B., Jamil S. 2018. Identification of Hypotensive Biofunctional Compounds of Coriandrum sativum and Evaluation of Their Angiotensin-Converting Enzyme (ACE) Inhibition Potential. Oxidative Medicine and Cellular Longevity. 15, 4643736.
  • Ali M.Y., Seong S.H., Jung H.A., Choi J.S. 2019. Angiotensin-I-converting enzyme inhibitory activity of coumarins from Angelica decursiva. Molecules 24 (21), 3937.
  • Hyun S.K., Oh Y.N., Kwon H.J., Kim B.W. 2013. Angiotensin converting enzyme inhibitory benzopyranoids from Angelica gigas. Food Science and Biotechnology, 22, 1741–1745.
  • Hansen K., Nyman U., Smitt U.W., Adsersen A., Gudiksen L., Rajasekharan S., Pushpangadan P.1995. In vitro screening of traditional medicines for anti-hypertensive effect based on inhibition of the angiotensin converting enzyme (ACE). Journal of Ethnopharmacology, 48:1, 43-51.
  • Simaratanamongkol A., Umehara K., Noguchi H., Panichayupakaranant P. 2014. Identification of a new angiotensin-converting enzyme (ACE) inhibitor from Thai edible plants. Food Chemistry,165: 92-97.
  • Suručić R., Kundaković T., Lakušić B., Drakul D., Milovanović S.R., Kovačević N. 2017. Variations in Chemical Composition, Vasorelaxant and Angiotensin I-Converting Enzyme Inhibitory Activities of Essential Oil from Aerial Parts of Seseli pallasii Besser (Apiaceae). Chemistry Biodiversity, 14(5). doi: 10.1002/cbdv.201600407
  • Saleem F., Sarkar D.., Ankolekar C., Shetty K. 2017. Phenolic bioactives and associated antioxidant and anti-hyperglycemic functions of select species of Apiaceae family targeting for type 2 diabetes relevant nutraceuticals. Industrial Crops and Products, 107,518-525.
There are 54 citations in total.

Details

Primary Language English
Journal Section Araştırma Makalesi
Authors

Fatih Çağlar Çelikezen 0000-0001-5489-7384

Vedat Türkoğlu 0000-0002-0935-1195

Mehmet Fırat 0000-0001-5814-614X

Zehra Baş 0000-0002-4071-9744

Project Number BEBAP 2019.002
Publication Date September 17, 2021
Submission Date March 10, 2021
Acceptance Date June 6, 2021
Published in Issue Year 2021

Cite

IEEE F. Ç. Çelikezen, V. Türkoğlu, M. Fırat, and Z. Baş, “The Effects of Coriandrum sativum L. and Chaerophyllum macropodum Boiss. (Apiaceae) on human plasma angiotensin-converting enzyme (ACE) in vitro”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 3, pp. 710–718, 2021, doi: 10.17798/bitlisfen.894569.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS