Bilgisayar görme algoritmaları teknolojinin ilerlemesiyle daha kullanılır hale gelmektedir. Klasik yöntemler olan görüntü işleme ve makine öğrenmesi algoritmaları ile yapılan bilgisayarlı görü uygulamaları halen kullanılsa da gürültüler veya istenmeyen ortam değişimleri etkisini sonuçlar üzerinde göstermektedir. Bu çalışmada, bul-tak oyuncağındaki 4 adet geometrik şeklin tespiti iki farklı yöntemle gerçekleştirilmiştir. Klasik yöntemde iki farklı algoritmada görüntü işleme ile elde edilen öznitelikler k-NN algoritması ile sınıflandırılmış, derin öğrenme yönteminde ise nesne tespiti için özelleşmiş olan Yolov4 algoritması kullanılmıştır. Deney ortamında klasik görüntü işleme yöntemi siyah arka planlı test veri setinde %100 başarım sağlarken, farklı renk ve desende arka plana sahip ikinci test veri setinde başarım %86,25’e düşmüştür. Yolov4 derin öğrenme yöntemi algoritması ise her iki veri setinde de %100 başarıma ulaşmıştır. Algoritmalar gerçek zamanlı kamera görüntüsü üzerinde çalıştırıldığında klasik yöntem siyah arka planlı bir kare görüntüde 0,06 sn’de, farklı renk ve desende arka plana sahip bir kare görüntüde ise 0,04sn’de nesne tespiti yaparken, Yolov4 yöntemi 1,06 sn’de nesne tespit işlemi gerçekleştirmiştir.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Araştırma Makalesi |
Authors | |
Publication Date | December 31, 2021 |
Submission Date | April 25, 2021 |
Acceptance Date | November 5, 2021 |
Published in Issue | Year 2021 |