Research Article
BibTex RIS Cite

Bir Akış Alanı İçerisine Sıralı Şekilde Yerleştirilen İki Silindir Arasındaki Mesafenin Alt Akış Bölgesindeki Silindire Olan Etkisinin Deneysel Olarak İncelenmesi

Year 2021, , 1304 - 1313, 31.12.2021
https://doi.org/10.17798/bitlisfen.929231

Abstract

Bu çalışmada, bir akış alanı içerisine sıralı şekilde yerleştirilen iki silindir (kontrol silindiri ve ısıtılan silindir) arasındaki mesafenin alt akış bölgesindeki ısıtılan silindir etrafındaki ısı transferine etkisi deneysel olarak incelenmiştir. Isıtılan silindir alüminyumdan imal edilmiş olup, içerisine elektrikli rezistans yerleştirilerek silindir yüzeyinin ısıtılması sağlanmıştır. Çalışmada öncelikle, silindir yüzeyinde sabit sıcaklık elde etmek ve ölçümleri gerçekleştirmek için bir sıcaklık ölçüm ve kontrol sistemi tasarlanmış ve test edilmiştir. İlk ölçümlerin değerlendirilebilmesi amacıyla tek silindir (ısıtılmış silindir) için farklı Reynolds (Re) sayılarında silindir etrafındaki değişimler incelenmiştir. Daha sonra Re=2700 için pasif akış kontrolü sağlamak amacı ile ısıtılan silindirin üst akış bölgesine farklı mesafelerde (L/D oranı) bir kontrol silindiri yerleştirilerek silindir çevresindeki ısı transferi incelenmiştir. Farklı Re sayılarında yapılan deneylerden, Nusselt (Nu) sayısının akışa bağlı olarak silindir çevresi boyunca değişim gösterdiği ayrıca Re sayısının artması ile silindir çevresindeki akış yapısındaki düzensizliklerden kaynaklı olarak silindir yüzeyindeki sıcaklıkların düştüğü ve dolayısıyla Nu sayısının arttığı görülmüştür. Silindirler arasındaki L/D oranının artması ile kontrol silindirinin etkisinin azaldığı görülmüş ve Re=2700 için ısı transferi açısından optimum oranın L/D=2.0 olduğu tespit edilmiştir.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Project Number

TÜBİTAK-218M357

Thanks

Bu çalışma Osmaniye Korkut Ata Üniversitesi Bilimsel Araştırma Projeleri Birimi (OKÜBAP) ve Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından sırasıyla OKÜBAP-2019-PT3-021 ve TÜBİTAK-218M357 adlı proje kapsamında desteklenmiştir. OKÜBAP ve TÜBİTAK'a desteklerinden dolayı teşekkür ederiz.

References

  • [1] Zhang X., Choi K., Huang Y., Li H. 2019. Flow Control Over a Circular Cylinder Using Virtual Moving Surface Boundary Layer Control. Experiments in Fluids, 60 (6): 1-15.
  • [2] Shams-Ul-Islam., Manzoor R., Khan U., Nazeer G., Hassan S. 2018. Drag Reduction on a Square Cylinder using Multiple Detached Control Cylinders. KSCE Journal of Civil Engineering, 22 (5): 2023-2034.
  • [3] Karasu İ. 2020. Flow Control Over a Diamond-Shaped Cylinder Using Slits. Experimental Thermal and Fluid Science, 112: 109992.
  • [4] Firat E., Ozkan G.M., Akilli H. 2017. PIV Measurements in The Near Wakes of Hollow Cylinders with Holes. Experiments in Fluids, 58 (5): 39.
  • [5] Wang L., Luo Z., Xia Z., Liu B., Deng X. 2012. Review of Actuators for High Speed Active Flow Control. Science China Technological Sciences, 55 (8): 2225-2240.
  • [6] Gad-el-Hak M. 2000. Flow Control: Passive, Active and Reactive Flow Management. Cambridge University Press, New York, 1-421.
  • [7] Oruç V., Akilli H., Sahin B. 2016. PIV Measurements on The Passive Control of Flow Past a Circular Cylinder. Experimental Thermal and Fluid Science, 70: 283-291.
  • [8] Feng J., Lin Y., Zhu G., Luo X. 2019. Effect Of Synthetic Jet Parameters on Flow Control of an Aerofoil at High Reynolds Number. Sādhanā, 44 (8): 1-10.
  • [9] Amiri S., Taher R., Mongeau L.G. 2014. Experimental Study of The Oscillatory Velocity and Temperature Near a Heated Circular Cylinder in an Acoustic Standing Wave. International Journal of Heat and Mass Transfer, 69: 464-472.
  • [10] Cebula A., Taler J., Ocłoń, P. 2018. Heat Flux and Temperature Determination in a Cylindrical Element with The Use of Finite Volume Finite Element Method. International Journal of Thermal Sciences, 127: 142-157.
  • [11] An B. L., Qu Y., Song X. Y., Dong W., Yuan Z. D., Zhao Y. L., Levick A. 2021. On Surface Temperature Measurement of Low Emittance Artefact Coating by Active Infrared Laser Radiation Thermometry. Infrared Physics & Technology, 115: 103696.
  • [12] Dipankar A., Sengupta T. K., Talla S. B. 2007. Suppression Of Vortex Shedding Behind a Circular Cylinder by Another Control Cylinder at Low Reynolds Numbers. Journal of Fluid Mechanics, 573: 171.
  • [13] Al-Mdallal Q.M., Mahfouz F.M. 2017. Heat Transfer from a Heated Non-Rotating Cylinder Performing Circular Motion in A Uniform Stream. Int J Heat Mass Transf, 112: 147–157.
  • [14] Gao Y., Etienne S., Wang X., Tan S.K. 2014. Experimental Study on The Flow Around Two Tandem Cylinders with Unequal Diameters. Journal of Ocean University of China, 13 (5): 761–770.
  • [15] Lin J.C., Yang Y., Rockwell D. 2002. Flow Past Two Cylinders in Tandem: Instantaneous and Averaged Flow Structure. Journal of Fluids and Structures, 16 (8): 1059–1071.
  • [16] Paramane S.B., Sharma A. 2010. Heat And Fluid Flow Across a Rotating Cylinder Dissipating Uniform Heat Flux in 2D Laminar Flow Regime. International Journal of Heat and Mass Transfer, 53 (21-22): 4672-4683.
  • [17] Khanafer K., Aithal S. M. 2017. Mixed Convection Heat Transfer in a Lid-Driven Cavity with A Rotating Circular Cylinder. International Communications in Heat and Mass Transfer, 86: 131-142.
  • [18] Özalp C., Polat C., Saydam D. B., Söyler M. Dye Injection Flow Visualization Around a Rotating Circular Cylinder. European Mechanical Science, 4 (4): 185-189.
  • [19] Saydam D.B. 2020. Aktif Akış Kontrol Tekniği Uygulanan Bir Silindir Etrafında Sıcaklık ve Hız Dağılımlarının Deneysel Olarak İncelenmesi. Osmaniye Korkut Ata Üniversitesi, Fen Bilimleri Enstitüsü, Osmaniye, 1-163.
  • [20] Holman J.P. 2001. Experimental Methods for Engineers. McGraw Hill, New York, 1-741.
  • [21] Cengel Y., Boles M. 2010. Thermodynamics: An Engineering Approach. McGraw Hill, New York, 1-1024.
  • [22] Kamel M.S., Lezsovits F. 2020. Enhancement of Pool Boiling Heat Transfer Performance Using Dilute Cerium Oxide/Water Nanofluid: An Experimental Investigation. International Communications in Heat and Mass Transfer, 114: 104587.
  • [23] Alnak, D. E., Varol, Y., Firat, M., Oztop, H. F., Ozalp, C. 2019. Experimental and Numerical Investigation of Impinged Water Jet Effects on Heated Cylinders for Convective Heat Transfer. International Journal of Thermal Sciences, 135, 493-508.
  • [24] Wang, X., Qi, D., Li, T., Lin, M., Ke, H., Zeng, M., Wang, Q. 2020. Heat Transfer Characteristics of Nonuniform Flow Around a Circular Cylinder in A T-Junction Duct. Journal of Heat Transfer, 142(10), 104502.
  • [25] Sanitjai, S., Goldstein, R. J. 2004. Heat Transfer from a Circular Cylinder to Mixtures of Water and Ethylene Glycol. International Journal of Heat and Mass Transfer, 47(22), 4785-4794.

Experimental Investigation of Effect of the Distance Between Two Cylinders Placed Inline in the Flow Area on the Cylinder in the Downstream Region

Year 2021, , 1304 - 1313, 31.12.2021
https://doi.org/10.17798/bitlisfen.929231

Abstract

In this study, the effect of the distance between two cylinders (control cylinder and heated cylinder) placed sequentially in a fluid flow on the heat transfer around the heated cylinder in the downstream region was investigated experimentally. The heated cylinder is made of aluminum, and the surface of the cylinder is heated by placing an electrical resistance inside. In the study, first, a temperature measurement and control system were designed and tested to obtain a constant temperature on the cylinder surface and to perform measurements. To evaluate the first measurements, the changes around the cylinder at different Reynolds (Re) numbers for a single cylinder were examined. Then, to provide passive flow control for Re = 2700, a control cylinder at different distance (L/D ratio) was placed in the upper flow area of the heated cylinder and the heat transfer around the cylinder was examined. It was determined from the experiments made with different Re numbers that the Nusselt (Nu) number changes along the circumference of the cylinder depending on the flow. In addition, it was observed that the temperature on the cylinder surface decreased due to the irregularities in the flow structure around the cylinder with the increase in the Re number and thus the Nu number increased. It was also observed that the effect of the control cylinder decreased with the increase of the L/D ratio between the cylinders, and it was determined that the optimum ratio for Re = 2700 in terms of heat transfer was L/D = 2.0.

Project Number

TÜBİTAK-218M357

References

  • [1] Zhang X., Choi K., Huang Y., Li H. 2019. Flow Control Over a Circular Cylinder Using Virtual Moving Surface Boundary Layer Control. Experiments in Fluids, 60 (6): 1-15.
  • [2] Shams-Ul-Islam., Manzoor R., Khan U., Nazeer G., Hassan S. 2018. Drag Reduction on a Square Cylinder using Multiple Detached Control Cylinders. KSCE Journal of Civil Engineering, 22 (5): 2023-2034.
  • [3] Karasu İ. 2020. Flow Control Over a Diamond-Shaped Cylinder Using Slits. Experimental Thermal and Fluid Science, 112: 109992.
  • [4] Firat E., Ozkan G.M., Akilli H. 2017. PIV Measurements in The Near Wakes of Hollow Cylinders with Holes. Experiments in Fluids, 58 (5): 39.
  • [5] Wang L., Luo Z., Xia Z., Liu B., Deng X. 2012. Review of Actuators for High Speed Active Flow Control. Science China Technological Sciences, 55 (8): 2225-2240.
  • [6] Gad-el-Hak M. 2000. Flow Control: Passive, Active and Reactive Flow Management. Cambridge University Press, New York, 1-421.
  • [7] Oruç V., Akilli H., Sahin B. 2016. PIV Measurements on The Passive Control of Flow Past a Circular Cylinder. Experimental Thermal and Fluid Science, 70: 283-291.
  • [8] Feng J., Lin Y., Zhu G., Luo X. 2019. Effect Of Synthetic Jet Parameters on Flow Control of an Aerofoil at High Reynolds Number. Sādhanā, 44 (8): 1-10.
  • [9] Amiri S., Taher R., Mongeau L.G. 2014. Experimental Study of The Oscillatory Velocity and Temperature Near a Heated Circular Cylinder in an Acoustic Standing Wave. International Journal of Heat and Mass Transfer, 69: 464-472.
  • [10] Cebula A., Taler J., Ocłoń, P. 2018. Heat Flux and Temperature Determination in a Cylindrical Element with The Use of Finite Volume Finite Element Method. International Journal of Thermal Sciences, 127: 142-157.
  • [11] An B. L., Qu Y., Song X. Y., Dong W., Yuan Z. D., Zhao Y. L., Levick A. 2021. On Surface Temperature Measurement of Low Emittance Artefact Coating by Active Infrared Laser Radiation Thermometry. Infrared Physics & Technology, 115: 103696.
  • [12] Dipankar A., Sengupta T. K., Talla S. B. 2007. Suppression Of Vortex Shedding Behind a Circular Cylinder by Another Control Cylinder at Low Reynolds Numbers. Journal of Fluid Mechanics, 573: 171.
  • [13] Al-Mdallal Q.M., Mahfouz F.M. 2017. Heat Transfer from a Heated Non-Rotating Cylinder Performing Circular Motion in A Uniform Stream. Int J Heat Mass Transf, 112: 147–157.
  • [14] Gao Y., Etienne S., Wang X., Tan S.K. 2014. Experimental Study on The Flow Around Two Tandem Cylinders with Unequal Diameters. Journal of Ocean University of China, 13 (5): 761–770.
  • [15] Lin J.C., Yang Y., Rockwell D. 2002. Flow Past Two Cylinders in Tandem: Instantaneous and Averaged Flow Structure. Journal of Fluids and Structures, 16 (8): 1059–1071.
  • [16] Paramane S.B., Sharma A. 2010. Heat And Fluid Flow Across a Rotating Cylinder Dissipating Uniform Heat Flux in 2D Laminar Flow Regime. International Journal of Heat and Mass Transfer, 53 (21-22): 4672-4683.
  • [17] Khanafer K., Aithal S. M. 2017. Mixed Convection Heat Transfer in a Lid-Driven Cavity with A Rotating Circular Cylinder. International Communications in Heat and Mass Transfer, 86: 131-142.
  • [18] Özalp C., Polat C., Saydam D. B., Söyler M. Dye Injection Flow Visualization Around a Rotating Circular Cylinder. European Mechanical Science, 4 (4): 185-189.
  • [19] Saydam D.B. 2020. Aktif Akış Kontrol Tekniği Uygulanan Bir Silindir Etrafında Sıcaklık ve Hız Dağılımlarının Deneysel Olarak İncelenmesi. Osmaniye Korkut Ata Üniversitesi, Fen Bilimleri Enstitüsü, Osmaniye, 1-163.
  • [20] Holman J.P. 2001. Experimental Methods for Engineers. McGraw Hill, New York, 1-741.
  • [21] Cengel Y., Boles M. 2010. Thermodynamics: An Engineering Approach. McGraw Hill, New York, 1-1024.
  • [22] Kamel M.S., Lezsovits F. 2020. Enhancement of Pool Boiling Heat Transfer Performance Using Dilute Cerium Oxide/Water Nanofluid: An Experimental Investigation. International Communications in Heat and Mass Transfer, 114: 104587.
  • [23] Alnak, D. E., Varol, Y., Firat, M., Oztop, H. F., Ozalp, C. 2019. Experimental and Numerical Investigation of Impinged Water Jet Effects on Heated Cylinders for Convective Heat Transfer. International Journal of Thermal Sciences, 135, 493-508.
  • [24] Wang, X., Qi, D., Li, T., Lin, M., Ke, H., Zeng, M., Wang, Q. 2020. Heat Transfer Characteristics of Nonuniform Flow Around a Circular Cylinder in A T-Junction Duct. Journal of Heat Transfer, 142(10), 104502.
  • [25] Sanitjai, S., Goldstein, R. J. 2004. Heat Transfer from a Circular Cylinder to Mixtures of Water and Ethylene Glycol. International Journal of Heat and Mass Transfer, 47(22), 4785-4794.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Doğan Burak Saydam 0000-0001-8453-2917

Coskun Özalp 0000-0003-2249-7268

Cemre Polat 0000-0002-7001-1042

Ertaç Hürdoğan 0000-0003-1054-9964

Project Number TÜBİTAK-218M357
Publication Date December 31, 2021
Submission Date April 28, 2021
Acceptance Date October 18, 2021
Published in Issue Year 2021

Cite

IEEE D. B. Saydam, C. Özalp, C. Polat, and E. Hürdoğan, “Bir Akış Alanı İçerisine Sıralı Şekilde Yerleştirilen İki Silindir Arasındaki Mesafenin Alt Akış Bölgesindeki Silindire Olan Etkisinin Deneysel Olarak İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 4, pp. 1304–1313, 2021, doi: 10.17798/bitlisfen.929231.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS