Research Article
BibTex RIS Cite

Determining of Aircraft Engine Greenhouse Gas (CO2, CH4 and N2O) Emissions from the Landing and Take-Off Operations Around the Airport Area

Year 2021, , 1140 - 1151, 17.09.2021
https://doi.org/10.17798/bitlisfen.930376

Abstract

Recently, environmental concerns arising from aviation activities have increased, and studies on the environmental aspect of aircraft operations within the concept of sustainable and cleaner aviation have become one of the important research topics. In this study, the Greenhouse Gas (GHG) Emissions, namely CO2, CH4 and N2O pollutants emitted to the environment during the landing and take-off operations in the International Eskisehir Hasan Polatkan Airport (LTBY) of aircraft engines were analyzed with the help of predictive approaches. Additionally, the average jet-fuel consumptions of these aircraft were determined. Calculations were performed in point of the method of the Intergovernmental Panel on Climate Change (IPCC) and performed with the Tier-2 predictive approach. According to results, it has been obtained that the Airbus 321 (A-321) series aircraft has the highest pollution with a value of 762495 kg/ year of GHG. Furthermore, it has been observed that approximately 1127 tons/year of CO2, 48.14 kg/year of CH4 and 39.77 kg/year of N2O were released into the environment. On the other hand, the total value of jet-fuel consumption during the landing and take-off operations of these aircraft is calculated to be an average of 357 tons/year. On the other hand, it has been determined that the Boeing B767-300 series aircraft (B763) is the most inefficient type of aircraft depending on the fuel consumption by performing a correlation between the parameters of average Jet-fuel consumption and total Landing and Take-off count.

References

  • [1] Yilmaz I., Ilbas M., Tastan M., Tarhan C. 2012. Investigation of hydrogen usage in the aviation industry. Energy Conversion and Management, 63: 63-69.
  • [2] Balli O., Hepbasli A. 2013. Energetic and exergetic analyses of a T56 turboprop engine. Energy Conversion and Management, 73: 106-120.
  • [3] Álvarez M.J.G., Yan W. 2013. Is Environmental Innovation Worth It? The Case of the Civil Aviation Industry of Emerging Markets. In: Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local World, 415: 294-301.
  • [4] Norton T.M. 2014. Aircraft Greenhouse Gas Emissions during the Landing and Takeoff Cycle at Bay Area Airports. Master’s dissertation, University of San Francisco, San Fransisco, 1-45.
  • [5] Metz B., Davidson O., Swart R., Pan J. 2001. Climate Change 2001: Mitigation, Contribution of Working Group III to the Third Assessment [TAR] Report of the Intergovernmental Panel on Climate Change (IPCC), New York: Cambridge University Press.
  • [6] Waitz I., Townsend J, Cutcher-Gershenfeld J., Greitzer E., Kerrebrock J. 2004. Aviation and the environment: A national vision statement, the framework for goals and recommended actions. Partnership for AiR transportation noise and emissions reduction. Massachusetts Institue Technology, 03-C-NE-MIT, 2004.
  • [7] Mahashabde A., Wolfe P., Ashok A., Dorbian C., He Q., Fan A., Lukachko S., Mozdzanowska A., Wollersheim C., Barrett S.R.H., Locke M., Waitz I.A. 2011. Assessing the environmental impacts of aircraft noise and emissions. Progress in Aerospace Sciences, 47: 15-52.
  • [8] Kurniawan J.S., Khardi S. 2011. 2011. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports. Environmental Impact Assessment Review, 31: 240-252.
  • [9] Ekici S., Yalin G., Altuntas O., Karakoc T.H. 2013. Calculation of HC, CO, and NOx from civil aviation in Turkey in 2012. International Journal of Environmental Pollution, 53: 232-244.
  • [10] Altuntas O. 2014. Calculation of domestic flight-caused global warming potential from aircraft emissions in Turkish airports. International Journal of Global Warming, 6: 367-379.
  • [11] Kesgin U. 2006. Aircraft emissions at Turkish airports. Energy, 31: 372-384.
  • [12] Unger N., Zhao Y., Dang H. 2013. Mid-21st century chemical forcing of climate by the civil aviation sector: Future Aviatıon Chemical Climate Forcing. Geophysical Research Letters, 40: 641-645.
  • [13] Song S.-K., Shon Z.-H., Kang Y.-H. 2015. Comparison of impacts of aircraft emissions within the boundary layer on the regional ozone in South Korea. Atmospheric Environment, 117: 169-179.
  • [14] Pecorari E., Mantovani A., Franceschini C., Bassano D., Palmeri L., Rampazzo G. 2016. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model. Sciences Total Environment, 541: 839-856.
  • [15] Babaoglu N., Ozgunoglu K. 2017. Kahramanmaraş Havalimanı İçin Uçaklardan Kaynaklanan Emisyonların Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 20: 24-30.
  • [16] Kaygusuz K. 2003. Energy policy and climate change in Turkey. Energy Conversion and Management, 44: 1671-1688.
  • [17] Tokuslu A. 2020. Estimation of aircraft emissions at Georgian international airport. Energy, 206: 118-219.
  • [18] Akyuz A.Ö., Kumas K., Inan O., Gungor A. 2019. Muğla Hava Trafiğinin Karbon Ayak İzi Açısından İncelenmesi. Academic Platform Journal of Engineering and Sciences, 7: 291-297.
  • [19] Yilmaz I. 2017. Emissions from passenger aircraft at Kayseri Airport, Turkey. Journal of Air Transport Management, 58: 176-182.
  • [20] Rissman J., Arunachalam S., BenDor T., West J.J. 2013. Equity and health impacts of aircraft emissions at the Hartsfield-Jackson Atlanta International Airport. Landscape and Urban Planning, 120: 234-247.
  • [21] Dong Q., Chen F., Chen Z. 2020. Airports and air pollutions: Empirical evidence from China. Transport Policy, 99: 385-395.
  • [22] Phoenix D., Khodayari A., Wuebbles D., Stewart K. 2019. Aviation impact on air quality present-day and mid-century simulated in the Community Atmosphere Model (CAM). Atmospheric Environment, 196: 125-132.
  • [23] Yang X., Cheng S., Lang J., Xu R., Lv Z. 2018. Characterization of aircraft emissions and air quality impacts of an international airport. Journal of Environmental Sciences, 72: 198-207.
  • [24] Altuntas O., Karakoc T.H. 2011. Türkiye’deki Bazı Hava Alanlarında İç Hat Uçuşları İçin Uçak Seçiminde Çevresel Etkilerin Göz Önünde Bulundurulmasının İncelenmesi. Havacılık ve Uzay Teknolojileri Dergisi, 5: 11-18.
  • [25] Kafali, H. and Altuntas, O. 2020. The analysis of emission values from commercial flights at Dalaman international airport Turkey. Aircraft Engineering and Aerospace Technology, 92 (10): 1451-1457.
  • [26] FAA. 2005. Aviation and Emissions: Office of Environment and Energy. Federal Aviation Administration, FAA.
  • [27] EC. 2021. European Commission: Shedding Light on Energy on the EU.
  • [28] Eggleston S., Buendia L., Miawa K., Ngara T., Tanabe K. 2006. Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme. 2006 IPCC guidelines for national greenhouse gas inventories, IGES Publishers, Japan, 1-1988.

Determining of Aircraft Engine Greenhouse Gas (CO2, CH4 and N2O) Emissions from the Landing and Take-Off Operations Around the Airport Area

Year 2021, , 1140 - 1151, 17.09.2021
https://doi.org/10.17798/bitlisfen.930376

Abstract

Son zamanlarda havacılık faaliyetlerinden kaynaklanan çevresel kaygılar artmış ve sürdürülebilir ve daha temiz havacılık konsepti içerisinde havacılığın çevresel boyutuna yönelik olarak yapılan çalışmalar önemli araştırma konularından birisi haline gelmiştir. Bu çalışmada, Uluslararası Eskişehir Hasan Polatkan Havalimanı'nda (LTBY) iniş ve kalkış operasyonları sırasında uçak motorlarindan çevreye yayılan sera gazı emisyonları olarak bilinen CO2, CH4 ve N2O kirleticileri, öngörücü yaklaşımlar yardımıyla analiz edilmiştir. Ek olarak, incelemeye konu uçakların uçuşun bu fazında toplamda yaklaşık jet yakıtı tüketim değerleri incelenmiştir. Hesaplamalar, IPCC (Hükümetlerarası İklim Değişikliği Paneli) yöntemi ışığında ve Tier-2 öngörücü yaklaşımla gerçekleştirilmiştir. Elde edilen sonuçlara göre Airbus 321 (A-321) serisi uçakların toplamda 762495 kg/yıl sera gazı emisyonu salınım değeri ile en yüksek kirliliğe sahip olduğu ortaya çıkmıştır. Ayrıca incelemeye konu uçaklardan iniş ve kalkış operasyonları neticesinde çevreye yaklaşık olarak 1127 ton/yıl karbondioksit (CO2), 48.14 kg/yıl metan (CH4) ve 39.77 kg/yıl diazot monoksit (N2O) salındığı görülmüştür. Öte yandan bu uçakların iniş-kalkış operasyonları sırasında jet yakıtı tüketiminin toplam değeri yaklaşik olarak 357 ton/yıl olarak hesaplanmıştır. Öte yandan, ortalama Jet yakıtı tüketimi ile toplam iniş kalkış operasyonu sayıları arasında korelasyon kurularak Boeing B767-300 (B763) serisi uçağın hesaplanmış olan yakıt tüketim performansına bağlı olarak en verimsiz uçak tipi olduğu tespit edilmiştir.

References

  • [1] Yilmaz I., Ilbas M., Tastan M., Tarhan C. 2012. Investigation of hydrogen usage in the aviation industry. Energy Conversion and Management, 63: 63-69.
  • [2] Balli O., Hepbasli A. 2013. Energetic and exergetic analyses of a T56 turboprop engine. Energy Conversion and Management, 73: 106-120.
  • [3] Álvarez M.J.G., Yan W. 2013. Is Environmental Innovation Worth It? The Case of the Civil Aviation Industry of Emerging Markets. In: Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local World, 415: 294-301.
  • [4] Norton T.M. 2014. Aircraft Greenhouse Gas Emissions during the Landing and Takeoff Cycle at Bay Area Airports. Master’s dissertation, University of San Francisco, San Fransisco, 1-45.
  • [5] Metz B., Davidson O., Swart R., Pan J. 2001. Climate Change 2001: Mitigation, Contribution of Working Group III to the Third Assessment [TAR] Report of the Intergovernmental Panel on Climate Change (IPCC), New York: Cambridge University Press.
  • [6] Waitz I., Townsend J, Cutcher-Gershenfeld J., Greitzer E., Kerrebrock J. 2004. Aviation and the environment: A national vision statement, the framework for goals and recommended actions. Partnership for AiR transportation noise and emissions reduction. Massachusetts Institue Technology, 03-C-NE-MIT, 2004.
  • [7] Mahashabde A., Wolfe P., Ashok A., Dorbian C., He Q., Fan A., Lukachko S., Mozdzanowska A., Wollersheim C., Barrett S.R.H., Locke M., Waitz I.A. 2011. Assessing the environmental impacts of aircraft noise and emissions. Progress in Aerospace Sciences, 47: 15-52.
  • [8] Kurniawan J.S., Khardi S. 2011. 2011. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports. Environmental Impact Assessment Review, 31: 240-252.
  • [9] Ekici S., Yalin G., Altuntas O., Karakoc T.H. 2013. Calculation of HC, CO, and NOx from civil aviation in Turkey in 2012. International Journal of Environmental Pollution, 53: 232-244.
  • [10] Altuntas O. 2014. Calculation of domestic flight-caused global warming potential from aircraft emissions in Turkish airports. International Journal of Global Warming, 6: 367-379.
  • [11] Kesgin U. 2006. Aircraft emissions at Turkish airports. Energy, 31: 372-384.
  • [12] Unger N., Zhao Y., Dang H. 2013. Mid-21st century chemical forcing of climate by the civil aviation sector: Future Aviatıon Chemical Climate Forcing. Geophysical Research Letters, 40: 641-645.
  • [13] Song S.-K., Shon Z.-H., Kang Y.-H. 2015. Comparison of impacts of aircraft emissions within the boundary layer on the regional ozone in South Korea. Atmospheric Environment, 117: 169-179.
  • [14] Pecorari E., Mantovani A., Franceschini C., Bassano D., Palmeri L., Rampazzo G. 2016. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model. Sciences Total Environment, 541: 839-856.
  • [15] Babaoglu N., Ozgunoglu K. 2017. Kahramanmaraş Havalimanı İçin Uçaklardan Kaynaklanan Emisyonların Belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 20: 24-30.
  • [16] Kaygusuz K. 2003. Energy policy and climate change in Turkey. Energy Conversion and Management, 44: 1671-1688.
  • [17] Tokuslu A. 2020. Estimation of aircraft emissions at Georgian international airport. Energy, 206: 118-219.
  • [18] Akyuz A.Ö., Kumas K., Inan O., Gungor A. 2019. Muğla Hava Trafiğinin Karbon Ayak İzi Açısından İncelenmesi. Academic Platform Journal of Engineering and Sciences, 7: 291-297.
  • [19] Yilmaz I. 2017. Emissions from passenger aircraft at Kayseri Airport, Turkey. Journal of Air Transport Management, 58: 176-182.
  • [20] Rissman J., Arunachalam S., BenDor T., West J.J. 2013. Equity and health impacts of aircraft emissions at the Hartsfield-Jackson Atlanta International Airport. Landscape and Urban Planning, 120: 234-247.
  • [21] Dong Q., Chen F., Chen Z. 2020. Airports and air pollutions: Empirical evidence from China. Transport Policy, 99: 385-395.
  • [22] Phoenix D., Khodayari A., Wuebbles D., Stewart K. 2019. Aviation impact on air quality present-day and mid-century simulated in the Community Atmosphere Model (CAM). Atmospheric Environment, 196: 125-132.
  • [23] Yang X., Cheng S., Lang J., Xu R., Lv Z. 2018. Characterization of aircraft emissions and air quality impacts of an international airport. Journal of Environmental Sciences, 72: 198-207.
  • [24] Altuntas O., Karakoc T.H. 2011. Türkiye’deki Bazı Hava Alanlarında İç Hat Uçuşları İçin Uçak Seçiminde Çevresel Etkilerin Göz Önünde Bulundurulmasının İncelenmesi. Havacılık ve Uzay Teknolojileri Dergisi, 5: 11-18.
  • [25] Kafali, H. and Altuntas, O. 2020. The analysis of emission values from commercial flights at Dalaman international airport Turkey. Aircraft Engineering and Aerospace Technology, 92 (10): 1451-1457.
  • [26] FAA. 2005. Aviation and Emissions: Office of Environment and Energy. Federal Aviation Administration, FAA.
  • [27] EC. 2021. European Commission: Shedding Light on Energy on the EU.
  • [28] Eggleston S., Buendia L., Miawa K., Ngara T., Tanabe K. 2006. Intergovernmental Panel on Climate Change, National Greenhouse Gas Inventories Programme. 2006 IPCC guidelines for national greenhouse gas inventories, IGES Publishers, Japan, 1-1988.
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Halil Yalcin Akdeniz 0000-0003-2101-6151

Publication Date September 17, 2021
Submission Date April 30, 2021
Acceptance Date July 2, 2021
Published in Issue Year 2021

Cite

IEEE H. Y. Akdeniz, “Determining of Aircraft Engine Greenhouse Gas (CO2, CH4 and N2O) Emissions from the Landing and Take-Off Operations Around the Airport Area”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 3, pp. 1140–1151, 2021, doi: 10.17798/bitlisfen.930376.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS