Research Article
BibTex RIS Cite

Tungsten Karbür Besleme Stoğundan Elde Edilen Parçalar İçin İdeal Çözücünün Araştırılması

Year 2021, , 1168 - 1174, 17.09.2021
https://doi.org/10.17798/bitlisfen.935719

Abstract

Bu çalışmada tungsten karbür - kobalt (WC-Co) besleme stoğundan Toz Enjeksiyon Kalıplama (TEK) yöntemi ile elde edilmiş numunelerin kimyasal bağlayıcı aşamasında kullanılacak çözücü türü araştırılmıştır. TEK yöntemi ile WC-Co besleme stoğundan hazırlanan deney numunelerinin kimyasal bağlayıcı giderme deneyleri onüç farklı çözücü (Toluen, Benzen, Heptan, Aseton, Etanol, Karbon tetraklorür (CCl4), Etanol+ Karbon tetraklorür (CCl4), Metanol, Nitrik asit, Hidroklorik asit, Sülfürik asit, Kloroform, Dikloroetan) kullanılarak gerçekleştirilmiştir. Deneyler sonucunda WC-Co besleme stoğu için bulunabilirlik ve maliyet açısından en ideal çözücünün etanol olduğu belirlenmiştir. Ayrıca deneyler sonucunda 60 °C sıcaklık ve 60 saat sürede etanol içerisinde tutulan parçalarda hedeflenen sonuçların elde edildiği belirlenmiştir.

Supporting Institution

TÜBİTAK ve Gazi Üniversitesi BAP birimi

Project Number

TÜBİTAK Proje No : 115M437 ; Gazi Üniversitesi BAP birimi Proje No : 07 / 2016-21

Thanks

Bu çalışmanın ortaya çıkmasındaki desteklerinden dolayı TÜBİTAK (Proje No. 115M437) ve Gazi Üniversitesi'ne (Proje No. 07 / 2016-21) teşekkürlerimizi sunarız.

References

  • [1] German R.M. 1990. Powder injection molding. Cambridge Univ Press, 1-457.
  • [2] Palacı Y. 1994. Kapileri emme mekanizması ile enjeksiyonda kalıplanmış parçadan bağlayıcının alınması,. Yüksek Lisans Tezi,İstanbul Teknik Üniversitesi, İTÜ Fen Bilimleri Enstitüsü, İstanbul, 1-55.
  • [3] Subaşı M., Safarian A., Karataş Ç. 2019. The investigation of production parameters of Ti-6Al-4V component by powder injection molding. The International Journal of Advanced Manufacturing Technology, 105:4747–4760.
  • [4] Urtekin L, Genç A, Bozkurt F. 2019. Fabrication and simulation of feedstock for titaniumpowder injection-molding cortical-bone screws. Mater Tehnol, 53:619–25.
  • [5] Baojun Z., Xuanhui Q. and Ying T. 2002. Powder injection molding of WC–8% Co tungsten cemented carbide. International Journal of Refractory Metals and Hard Materials, 20(5-6): 389-394.
  • [6] Lee W.-J., Lee S.-E. and Kim C.-G. 2006. The mechanical properties of MWNT/PMMA nanocomposites fabricated by modified injection molding. Composite Structures, 76(4): 406-410.
  • [7] Heng S. Y., Norhamidi M., Sulong A. B., Abdolali F., Sri Y., Amin M. 2013. Effect of sintering temperature on the mechanicaland physical properties of WC–10%Co through micro-powderinjection molding (mPIM), Ceramics International. 39 : 4457–4464.
  • [8] Li T., Qingfa L., Fuh J.Y.H., Poh C. Y., Lu L. 2009. Two-material powder injection molding of functionally graded WC–Co components, Int. Journal of Refractory Metals & Hard Materials. 27 : 95–100.
  • [9] Nishimura K. and Yoshino K., 1995. Binder system for use in the injection molding of sinterable powders and molding compound containing the binder system, Google Patents, 1-10.
  • [10] Mutsuddy B.C. and Ford R.G. 1994. Ceramic injection molding. Vol. 1. Springer Science& Business Media, 1-152.
  • [11] Diaz-Cano A., Trice R.W. and Youngblood J.P. 2017. Stabilization of highly-loaded boron carbide aqueous suspensions, Ceramics International, 43(12): 8572- 8578.
  • [12] Okumura K.-i., Chono K., Ozeki H. and Hamada T. 1991. Reaction injection molding method. Google Patents, 1-10.
  • [13] Chen A.T., Farrissey W.J.J. and Robert G.N.I. 1978. Polyester amides suitable for injection molding. Google Patents, 1-10.
  • [14] Fukushima M. and Iwanami T. 1975. Molding material. Google Patents, 1-10.
  • [15] Imai T., Hashimoto M. and Harima S. 2001. Polypropylene resin composition and injection-molded article thereof. Google Patents, 1-10.
  • [16] Qu X., Gao J., Qin M. and Lei C. 2005. Application of a wax-based binder in PIM of WC–TiC–Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 23(4-6): 273-277.
  • [17] Enneti R.K., Prough K.C., Wolfe T.A., Klein A., Studley N. and Trasorras J.L. 2018. Sintering of WC-12% Co processed by binder jet 3D printing (BJ3DP) technology. International Journal of Refractory Metals and Hard Materials, 71: 28-35.
Year 2021, , 1168 - 1174, 17.09.2021
https://doi.org/10.17798/bitlisfen.935719

Abstract

Project Number

TÜBİTAK Proje No : 115M437 ; Gazi Üniversitesi BAP birimi Proje No : 07 / 2016-21

References

  • [1] German R.M. 1990. Powder injection molding. Cambridge Univ Press, 1-457.
  • [2] Palacı Y. 1994. Kapileri emme mekanizması ile enjeksiyonda kalıplanmış parçadan bağlayıcının alınması,. Yüksek Lisans Tezi,İstanbul Teknik Üniversitesi, İTÜ Fen Bilimleri Enstitüsü, İstanbul, 1-55.
  • [3] Subaşı M., Safarian A., Karataş Ç. 2019. The investigation of production parameters of Ti-6Al-4V component by powder injection molding. The International Journal of Advanced Manufacturing Technology, 105:4747–4760.
  • [4] Urtekin L, Genç A, Bozkurt F. 2019. Fabrication and simulation of feedstock for titaniumpowder injection-molding cortical-bone screws. Mater Tehnol, 53:619–25.
  • [5] Baojun Z., Xuanhui Q. and Ying T. 2002. Powder injection molding of WC–8% Co tungsten cemented carbide. International Journal of Refractory Metals and Hard Materials, 20(5-6): 389-394.
  • [6] Lee W.-J., Lee S.-E. and Kim C.-G. 2006. The mechanical properties of MWNT/PMMA nanocomposites fabricated by modified injection molding. Composite Structures, 76(4): 406-410.
  • [7] Heng S. Y., Norhamidi M., Sulong A. B., Abdolali F., Sri Y., Amin M. 2013. Effect of sintering temperature on the mechanicaland physical properties of WC–10%Co through micro-powderinjection molding (mPIM), Ceramics International. 39 : 4457–4464.
  • [8] Li T., Qingfa L., Fuh J.Y.H., Poh C. Y., Lu L. 2009. Two-material powder injection molding of functionally graded WC–Co components, Int. Journal of Refractory Metals & Hard Materials. 27 : 95–100.
  • [9] Nishimura K. and Yoshino K., 1995. Binder system for use in the injection molding of sinterable powders and molding compound containing the binder system, Google Patents, 1-10.
  • [10] Mutsuddy B.C. and Ford R.G. 1994. Ceramic injection molding. Vol. 1. Springer Science& Business Media, 1-152.
  • [11] Diaz-Cano A., Trice R.W. and Youngblood J.P. 2017. Stabilization of highly-loaded boron carbide aqueous suspensions, Ceramics International, 43(12): 8572- 8578.
  • [12] Okumura K.-i., Chono K., Ozeki H. and Hamada T. 1991. Reaction injection molding method. Google Patents, 1-10.
  • [13] Chen A.T., Farrissey W.J.J. and Robert G.N.I. 1978. Polyester amides suitable for injection molding. Google Patents, 1-10.
  • [14] Fukushima M. and Iwanami T. 1975. Molding material. Google Patents, 1-10.
  • [15] Imai T., Hashimoto M. and Harima S. 2001. Polypropylene resin composition and injection-molded article thereof. Google Patents, 1-10.
  • [16] Qu X., Gao J., Qin M. and Lei C. 2005. Application of a wax-based binder in PIM of WC–TiC–Co cemented carbides. International Journal of Refractory Metals and Hard Materials, 23(4-6): 273-277.
  • [17] Enneti R.K., Prough K.C., Wolfe T.A., Klein A., Studley N. and Trasorras J.L. 2018. Sintering of WC-12% Co processed by binder jet 3D printing (BJ3DP) technology. International Journal of Refractory Metals and Hard Materials, 71: 28-35.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Kamran Samet 0000-0002-4159-3610

Mehmet Subaşı 0000-0003-4826-9175

Çetin Karataş 0000-0003-0005-3068

Project Number TÜBİTAK Proje No : 115M437 ; Gazi Üniversitesi BAP birimi Proje No : 07 / 2016-21
Publication Date September 17, 2021
Submission Date May 10, 2021
Acceptance Date August 12, 2021
Published in Issue Year 2021

Cite

IEEE K. Samet, M. Subaşı, and Ç. Karataş, “Tungsten Karbür Besleme Stoğundan Elde Edilen Parçalar İçin İdeal Çözücünün Araştırılması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 3, pp. 1168–1174, 2021, doi: 10.17798/bitlisfen.935719.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS