Research Article
BibTex RIS Cite

Azot-Katkılı 3 Boyutlu Grafen Mimari Üzerinde Desteklenen Paladyum Nanopartiküllerin Doğrudan Metanol Yakıt Hücrelerinde Elektrokatalizör Olarak Kullanılabilirliğinin İncelenmesi

Year 2021, , 870 - 876, 17.09.2021
https://doi.org/10.17798/bitlisfen.950684

Abstract

Yüksek elektroaktif özelliğe sahip elektrokatalizörlerin tasarımı, yüksek güç yoğunluğuna sahip taşınabilir yakıt hücresi sistemlerinin geliştirilmesinde kritik bir nokta olarak kabul edilmektedir. Bu çalışmada, doğrudan metanol yakıt hücresinde elektrokatalizör olarak kullanılabilecek azot-katkılı 3-boyutlu grafen (N-3DG) mimarisi ile desteklenen Pd nanoparçacıklarının sentezi için kolay ve düşük maliyetli bir üretim yöntemi önerilmiştir. Güçlü sinerjik etkilerin yanı sıra benzersiz yapısal özelliklere sahip olan Pd/N-3DG hibrit elektrokatalizörü, metanol elektrooksidasyonuna karşı, ticari Pd elektrokatalizöründen (Pd/Vulcan XC-72R) daha yüksek anodik tepe akım yoğunluk değerleri ve daha yüksek katalitik kararlılık gibi üstün elektrokatalitik performans sergilemiştir. Bu çalışma, yakıt pili teknolojisinde ticari Pd elektrokatalizörlerine alternatif olarak kullanılabilecek yüksek performanslı, düşük maliyetli elektrokatalizörlerin üretilmesi için yeni bir yaklaşımın yolunu açmaktadır.

References

  • Arico A.S., Bruce P., Scrosati B., Tarascon J.M., Van Schalkwijk W. 2011. Nanostructured materials for advanced energy conversion and storage devices. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, 148-159.
  • Karaman C., Karaman O., Atar N., Yola M.L. 2021. Tailoring of cobalt phosphide anchored nitrogen and sulfur co-doped three dimensional graphene hybrid: Boosted electrocatalytic performance towards hydrogen evolution reaction. Electrochimica Acta, 380: 138262.
  • Akça A., Karaman O., Karaman C. 2021. Mechanistic Insights into Catalytic Reduction of N2O by CO over Cu-Embedded Graphene: A Density Functional Theory Perspective. ECS Journal of Solid State Science and Technology, 10 (4): 041003.
  • Debe M.K. 2012. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486 (7401): 43-51.
  • Yola M.L., Eren T., Atar N., Saral H., Ermiş İ. 2016. Direct-methanol fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic nanoparticles: Electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis, 28 (3): 570-579.
  • Karaman C. Orange Peel Derived‐Nitrogen and Sulfur Co‐doped Carbon Dots: a Nano‐booster for Enhancing ORR Electrocatalytic Performance of 3D Graphene Networks. Electroanalysis, 33: 1356-1369.
  • Zhang X., Zhu J., Tiwary C.S., Ma Z., Huang H., Zhang J., ... & Wu Y. 2016. Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS applied materials & interfaces, 8 (17): 10858-10865.
  • Huang H., Wang X. 2014. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. Journal of Materials Chemistry A, 2 (18): 6266-6291.
  • Qu K., Wu L., Ren J., Qu X. 2012. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction. ACS applied materials & interfaces, 4 (9): 5001-5009.
  • Huang Y.X., Xie J.F., Zhang X., Xiong L., Yu H.Q. 2014. Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities. ACS applied materials & interfaces, 6 (18): 15795-15801.
  • Hu C., Wang X. 2015. Highly dispersed palladium nanoparticles on commercial carbon black with significantly high electro-catalytic activity for methanol and ethanol oxidation. International journal of hydrogen energy, 40 (36): 12382-12391.
  • Qin Y.H., Jia Y.B., Jiang Y., Niu D.F., Zhang X.S., Zhou X.G., ... & Yuan W.K. 2012. Controllable synthesis of carbon nanofiber supported Pd catalyst for formic acid electrooxidation. International journal of hydrogen energy, 37 (9): 7373-7377.
  • Bai Z., Huang R., Niu L., Zhang Q., Yang L., Zhang J. 2015. A facile synthesis of hollow palladium/copper alloy nanocubes supported on N-doped graphene for ethanol electrooxidation catalyst. Catalysts, 5 (2): 747-758.
  • Lim E.J., Kim Y., Choi S.M., Lee S., Noh Y., Kim W.B. 2015. Binary PdM catalysts (M= Ru, Sn, or Ir) over a reduced graphene oxide support for electro-oxidation of primary alcohols (methanol, ethanol, 1-propanol) under alkaline conditions. Journal of Materials Chemistry A, 3 (10): 5491-5500.
  • Qu K., Zheng Y., Zhang X., Davey K., Dai S., Qiao S.Z. 2017. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS nano, 11 (7): 7293-7300.
  • Ai W., Li J., Du Z., Zou C., Du H., Xu X., ... & Yu T. 2018. Dual confinement of polysulfides in boron-doped porous carbon sphere/graphene hybrid for advanced Li-S batteries. Nano Research, 11 (9): 4562-4573.
  • Yang H., Zhang X., Zou H., Yu Z., Li S., Sun J., ... & Ma J. 2018. Palladium nanoparticles anchored on three-dimensional nitrogen-doped carbon nanotubes as a robust electrocatalyst for ethanol oxidation. ACS Sustainable Chemistry & Engineering, 6 (6): 7918-7923.
  • Kakaei K., Rahnavardi M. 2021. Synthesis of nitrogen-doped reduced graphene oxide and its decoration with high efficiency palladium nanoparticles for direct ethanol fuel cell. Renewable Energy, 163: 1277-1286.
  • Yao C., Zhang Q., Su Y., Xu L., Wang H., Liu J., Hou S. 2019. Palladium nanoparticles encapsulated into hollow N-doped graphene microspheres as electrocatalyst for ethanol oxidation reaction. ACS Applied Nano Materials, 2 (4): 1898-1908.
Year 2021, , 870 - 876, 17.09.2021
https://doi.org/10.17798/bitlisfen.950684

Abstract

References

  • Arico A.S., Bruce P., Scrosati B., Tarascon J.M., Van Schalkwijk W. 2011. Nanostructured materials for advanced energy conversion and storage devices. Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, 148-159.
  • Karaman C., Karaman O., Atar N., Yola M.L. 2021. Tailoring of cobalt phosphide anchored nitrogen and sulfur co-doped three dimensional graphene hybrid: Boosted electrocatalytic performance towards hydrogen evolution reaction. Electrochimica Acta, 380: 138262.
  • Akça A., Karaman O., Karaman C. 2021. Mechanistic Insights into Catalytic Reduction of N2O by CO over Cu-Embedded Graphene: A Density Functional Theory Perspective. ECS Journal of Solid State Science and Technology, 10 (4): 041003.
  • Debe M.K. 2012. Electrocatalyst approaches and challenges for automotive fuel cells. Nature, 486 (7401): 43-51.
  • Yola M.L., Eren T., Atar N., Saral H., Ermiş İ. 2016. Direct-methanol fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic nanoparticles: Electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis, 28 (3): 570-579.
  • Karaman C. Orange Peel Derived‐Nitrogen and Sulfur Co‐doped Carbon Dots: a Nano‐booster for Enhancing ORR Electrocatalytic Performance of 3D Graphene Networks. Electroanalysis, 33: 1356-1369.
  • Zhang X., Zhu J., Tiwary C.S., Ma Z., Huang H., Zhang J., ... & Wu Y. 2016. Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS applied materials & interfaces, 8 (17): 10858-10865.
  • Huang H., Wang X. 2014. Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells. Journal of Materials Chemistry A, 2 (18): 6266-6291.
  • Qu K., Wu L., Ren J., Qu X. 2012. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction. ACS applied materials & interfaces, 4 (9): 5001-5009.
  • Huang Y.X., Xie J.F., Zhang X., Xiong L., Yu H.Q. 2014. Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities. ACS applied materials & interfaces, 6 (18): 15795-15801.
  • Hu C., Wang X. 2015. Highly dispersed palladium nanoparticles on commercial carbon black with significantly high electro-catalytic activity for methanol and ethanol oxidation. International journal of hydrogen energy, 40 (36): 12382-12391.
  • Qin Y.H., Jia Y.B., Jiang Y., Niu D.F., Zhang X.S., Zhou X.G., ... & Yuan W.K. 2012. Controllable synthesis of carbon nanofiber supported Pd catalyst for formic acid electrooxidation. International journal of hydrogen energy, 37 (9): 7373-7377.
  • Bai Z., Huang R., Niu L., Zhang Q., Yang L., Zhang J. 2015. A facile synthesis of hollow palladium/copper alloy nanocubes supported on N-doped graphene for ethanol electrooxidation catalyst. Catalysts, 5 (2): 747-758.
  • Lim E.J., Kim Y., Choi S.M., Lee S., Noh Y., Kim W.B. 2015. Binary PdM catalysts (M= Ru, Sn, or Ir) over a reduced graphene oxide support for electro-oxidation of primary alcohols (methanol, ethanol, 1-propanol) under alkaline conditions. Journal of Materials Chemistry A, 3 (10): 5491-5500.
  • Qu K., Zheng Y., Zhang X., Davey K., Dai S., Qiao S.Z. 2017. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS nano, 11 (7): 7293-7300.
  • Ai W., Li J., Du Z., Zou C., Du H., Xu X., ... & Yu T. 2018. Dual confinement of polysulfides in boron-doped porous carbon sphere/graphene hybrid for advanced Li-S batteries. Nano Research, 11 (9): 4562-4573.
  • Yang H., Zhang X., Zou H., Yu Z., Li S., Sun J., ... & Ma J. 2018. Palladium nanoparticles anchored on three-dimensional nitrogen-doped carbon nanotubes as a robust electrocatalyst for ethanol oxidation. ACS Sustainable Chemistry & Engineering, 6 (6): 7918-7923.
  • Kakaei K., Rahnavardi M. 2021. Synthesis of nitrogen-doped reduced graphene oxide and its decoration with high efficiency palladium nanoparticles for direct ethanol fuel cell. Renewable Energy, 163: 1277-1286.
  • Yao C., Zhang Q., Su Y., Xu L., Wang H., Liu J., Hou S. 2019. Palladium nanoparticles encapsulated into hollow N-doped graphene microspheres as electrocatalyst for ethanol oxidation reaction. ACS Applied Nano Materials, 2 (4): 1898-1908.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Onur Karaman 0000-0003-3672-1865

Publication Date September 17, 2021
Submission Date June 10, 2021
Acceptance Date August 12, 2021
Published in Issue Year 2021

Cite

IEEE O. Karaman, “Azot-Katkılı 3 Boyutlu Grafen Mimari Üzerinde Desteklenen Paladyum Nanopartiküllerin Doğrudan Metanol Yakıt Hücrelerinde Elektrokatalizör Olarak Kullanılabilirliğinin İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 3, pp. 870–876, 2021, doi: 10.17798/bitlisfen.950684.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS