Research Article
BibTex RIS Cite

Termal buharlaştırma yöntemi ile üretilen n-ZnO/p-Si heteroeklem kontakların elektriksel ve optiksel karakterizasyonu

Year 2021, , 902 - 910, 17.09.2021
https://doi.org/10.17798/bitlisfen.956341

Abstract

Bu çalışmada, n-ZnO ince filmi p-Si yarıiletkeni ve mikroskop camı üzerinde termal buharlaştırma yöntemi ile üretilmiştir. n-ZnO ince filmler, UV-Vis spektroskopisi, X-ışını kırınımı (XRD) ve enerji dağılımlı X-ışını spektroskopisi (EDX) ile incelenmiştir. n-ZnO/p-Si diyotların elektriksel özellikleri karanlıkta ve oda sıcaklığında, akım-voltaj (I-V) ve kapasitans-voltaj (C-V) ölçümleri ile incelenmiştir. Üretilen numunelerin idealite faktörü (n), engel yüksekliği (Фb) ve seri direnci (Rs), I-V ve C-V ölçümlerinden ve Cheung fonksiyonlarından hesaplanmıştır. Ayrıca n-ZnO/p-Si diyotların optiksel özellikleri 100 mW/cm2 ve AM 1.5 aydınlatma altında incelenmiştir.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

FYL-2018-7203

Thanks

Bu çalışma, Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından FYL-2018-7203 proje numarası ile finansal olarak desteklenmiştir.

References

  • [1] Krunks M., Mellikov E., 1995. Zinc oxide thin films by the spray pyroysis method, Thin Solid Films, 270: 33-36.
  • [2] Paraguay F.D., Estrada W.L., Acosta D.R.N., Andradeb E., Miki-Yoshida M., 1999. Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis, Thin Solid Films, 350: 192-202.
  • [3] Ayouchi R., Leinena D, Martına F., Gabasa M., Dalchieleb E., Ramos-Barrado J.D., 2003. Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis, Thin Solid Films, 426: 68-72.
  • [4] Zaier A., Meftah A., Jaber A.Y., Abdelaziz A.A., Aida M.S., 2015. Annealing effects on the structural, electrical and optical properties of ZnO thin films prepared by thermal evaporation technique, Journal of King Saud University-Science, 27: 356-360.
  • [5] Wang Y.G., Lau S.P., Lee H.W., Yu S.F., Tay B.K., Zhang X.H., Tse K.Y., Hng H.H., 2003. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature, Journal of Applied Physics, 94(3), 1597-1604.
  • [6] Hames Y., Alpaslan Z., Kosemen A., San S.E., Yerli Y., 2010. Electrochemically grown ZnO nanorods for hybrid solar cell applications, Solar Energy 84: 426-431.
  • [7] Hasim S.N.F., Abdul Hamid M.A., Shamsudin R., Jalar A., 2009. Synthesis and characterization of ZnO thin films by thermal evaporation, Journal of Physics and Chemistry of Solids 70: 1501-1504.
  • [8] Abdallah B., Kakhia M., Obaide A., 2021. Morphological and structural studies of ZnO nanotube films using thermal evaporation technique, Plasmonics, https://doi.org/10.1007/s11468-021-01420-x.
  • [9] Chrissanthopoulos A., Baskoutas S., Bouropoulos N., Dracopoulos V., Poulopoulos P., Yannopoulos S.N., 2011. Synthesis and characterization of ZnO/NiO p-n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation, Photonics and Nanostructures, 9: 132-139.
  • [10] Yao B.D., Chan Y.F., Wang N., 2002. Formation of ZnO nanostructures by a simple way of thermal evaporation, Applied Physics Letters, 81(4): 757-759.
  • [11] Patel M., Kim H.S., Kim J., Yun J.H., Kim S.J., Choi E.H., Park H.H., 2017. Excitonic metal oxide heterojunction NiO/ZnO solar cells for all transparent modüle integration, Solar Energy Materials and Solar Cells, 170: 246-253.
  • [12] Vyas S., Giri P., Singh S., Chakrabarti P., 2015. Comparative study of as-deposited ZnO thin films by thermal evaporation, pulsed laser deposition and RF sputtering methods for electronic and optoelectronic applications, Journal of Electronic Materıals, 44(10): 3401-3407.
  • [13] Bouhssira N., Abed S., Tomasella E., Cellier J., Mosbah A., Aida M.S., Jacquet M., 2006. Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation, Applied Surface Science, 252: 5594-5597.
  • [14] Fouad O.A., Ismail A.A., Zaki Z.I., Mohamed R.M., 2006. Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity, Applied Catalysis B: Environmental, 62: 144-149.
  • [15] Utlu G., 2019. Structural investigation of ZnO thin films obtained by annealing after thermal evaporation, Sakarya University Journal of Science, 23(4): 650-656.
  • [16] Herediaa E., Bojorgea C., Casanovaa J., Canepaa H., Craievichb A, Kellermann G., 2014. Nanostructured ZnO thin films prepared by sol–gel spin-coating,, Applied Surface Science, 317: 19-25.
  • [17] Orak I., Kocyigit A., Turut A., 2017. The surface morphology properties and respond illumination impact of ZnO/n-Si photodiode by prepared atomic layer deposition technique, Journal of Alloys and Compounds, 691: 873-879.
  • [18] Özmen A., Aydogan Ş., Yilmaz M., 2019. Fabrication of spray derived nanostructured n-ZnO/p-Si heterojunction diode and investigation of its response to dark and light, Ceramics International, 45: 14794-14805.
  • [19] Bedia F.Z., Bedia A., Benyoucef B., Hamzaoui S., 2014. Electrical characterization of n-ZnO/p-Si heterojunction prepared by spray pyrolysis technique, Physics Procedia, 55: 61-67.
  • [20] Lee J.Y, Choi Y.S., Kim J.H., Park M.O., Im S., 2002. Optimizing n-ZnO/p-Si heterojunctions for photodiode applications, Thin Solid Films, 403: 553-557.
  • [21] Jeong I.S., Kim J.H., Im S., 2003. Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure, Applied Physics Letters, 83: 2946-2948.
  • [22] Chaabouni F., Abaab M., Rezig B., 2006. Characterization of n-ZnO/p-Si films grown by magnetron sputtering, Superlattices and Microstructures, 39: 171-178.
  • [23] Cho S.G., Lee D.U., Pak S.W., Nahm T.U., Kim E.K., 2012. Fabrication of a n-ZnO/p-Si heterojunction diode by ultra-high vacuum magnetron sputtering, Thin Solid Films, 520: 5997-6000.
  • [24] Tata S., Chabane L., Zebbar N., Trari M., Kechouane M., Rahal A., 2020. Study of morphological and electrical properties of the ZnO/p-Si heterojunction: Application to sensing efficiency of low concentration of ethanol vapor at room temperature, Materials Science in Semiconductor Processing, 109: 104926.
  • [25] Yakuphanoglu F., Caglar Y., Caglar M., Ilican S., 2010. ZnO/p-Si heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate, Materials Science in Semiconductor Processing, 13: 137-140.
  • [26] Aksoy S., Caglar Y., 2012. Effect of ambient temperature on electrical properties of nanostructure n-ZnO/p-Si heterojunction diode, Superlattices and Microstructures 51: 613-625.
  • [27] Ocak Y.S., 2012. Electrical characterization of DC sputtered ZnO/p-Si heterojunction, Journal of Alloys and Compounds 513: 130-134.
  • [28] Algün G., 2018. ZnO kaplama miktarının n-ZnO/p-Si heteroeklem güneş hücresinin verimliliğine etkisi, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 13 (2): 154-163.
  • [29] Orak İ., 2016. The performances photodiode and diode of ZnO thin film by atomic layer deposition technique, Solid State Communications, 247: 17-22.
  • [30] Kima H., Jungb M.J., Choib S., Choi B.J., 2020. ALD growth of ZnO on p-Si and electrical characterization of ZnO/p-Si heterojunctions, Materials Today Communications, 25: 101265.
  • [31] Sharma S., Periasamy C., 2014. A study on the electrical characteristic of n-ZnO/p-Si heterojunction diode prepared by vacuum coating technique, Superlattices and Microstructures, 73: 12-21.
  • [32] Reem Sami Ali R.S., P, Sharba K.S., Jabbar A.M., Chiad S.S., Abass K.H., Habubi N.F., 2020. Characterization of ZnO thin film/p-Si fabricated by vacuum evaporation method for solar cell applications, NeuroQuantology, 18 (1): 26-31.
  • [33] Ozkartal A. 2019. Characterization of the ITO/p-Si/Al contacts produced by thermal evaporation. Vacuum, 168: 108799.
  • [34] Ziel A., 1968. Solid State Physical Electronics, second ed. Prentice-Hall, New Jersey.
  • [35] Sze S.M., 1981. Physics of Semiconductor Devices, second ed. Wiley, New York.
  • [36] Rhoderick E.H., Williams R.H., 1978. Metal-Semiconductor Contacts. Oxford University Press.
  • [37] Ozkartal A., Temirci C., 2016. Relationship between photovoltaic and diode characteristic parameters in the Sn/p-Si Schottky type photovoltaics, Solar Energy, 132: 96–102.
  • [36] Özmenteş R., Temirci C., Ozkartal A., Ejderha K., Yildirim N. 2018. Characterization of CuO/n-Si heterojunction solar cells produced by thermal evaporation. Materials Science-Poland, 36 (4): 668-674.
  • [37] Cheung S.K., Cheung N.W., 1986. Extraction of Schottky diode parameters from forward current-voltage characteristics, Applied Physics Letters, 49 (2): 85–90.
Year 2021, , 902 - 910, 17.09.2021
https://doi.org/10.17798/bitlisfen.956341

Abstract

Project Number

FYL-2018-7203

References

  • [1] Krunks M., Mellikov E., 1995. Zinc oxide thin films by the spray pyroysis method, Thin Solid Films, 270: 33-36.
  • [2] Paraguay F.D., Estrada W.L., Acosta D.R.N., Andradeb E., Miki-Yoshida M., 1999. Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis, Thin Solid Films, 350: 192-202.
  • [3] Ayouchi R., Leinena D, Martına F., Gabasa M., Dalchieleb E., Ramos-Barrado J.D., 2003. Preparation and characterization of transparent ZnO thin films obtained by spray pyrolysis, Thin Solid Films, 426: 68-72.
  • [4] Zaier A., Meftah A., Jaber A.Y., Abdelaziz A.A., Aida M.S., 2015. Annealing effects on the structural, electrical and optical properties of ZnO thin films prepared by thermal evaporation technique, Journal of King Saud University-Science, 27: 356-360.
  • [5] Wang Y.G., Lau S.P., Lee H.W., Yu S.F., Tay B.K., Zhang X.H., Tse K.Y., Hng H.H., 2003. Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature, Journal of Applied Physics, 94(3), 1597-1604.
  • [6] Hames Y., Alpaslan Z., Kosemen A., San S.E., Yerli Y., 2010. Electrochemically grown ZnO nanorods for hybrid solar cell applications, Solar Energy 84: 426-431.
  • [7] Hasim S.N.F., Abdul Hamid M.A., Shamsudin R., Jalar A., 2009. Synthesis and characterization of ZnO thin films by thermal evaporation, Journal of Physics and Chemistry of Solids 70: 1501-1504.
  • [8] Abdallah B., Kakhia M., Obaide A., 2021. Morphological and structural studies of ZnO nanotube films using thermal evaporation technique, Plasmonics, https://doi.org/10.1007/s11468-021-01420-x.
  • [9] Chrissanthopoulos A., Baskoutas S., Bouropoulos N., Dracopoulos V., Poulopoulos P., Yannopoulos S.N., 2011. Synthesis and characterization of ZnO/NiO p-n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation, Photonics and Nanostructures, 9: 132-139.
  • [10] Yao B.D., Chan Y.F., Wang N., 2002. Formation of ZnO nanostructures by a simple way of thermal evaporation, Applied Physics Letters, 81(4): 757-759.
  • [11] Patel M., Kim H.S., Kim J., Yun J.H., Kim S.J., Choi E.H., Park H.H., 2017. Excitonic metal oxide heterojunction NiO/ZnO solar cells for all transparent modüle integration, Solar Energy Materials and Solar Cells, 170: 246-253.
  • [12] Vyas S., Giri P., Singh S., Chakrabarti P., 2015. Comparative study of as-deposited ZnO thin films by thermal evaporation, pulsed laser deposition and RF sputtering methods for electronic and optoelectronic applications, Journal of Electronic Materıals, 44(10): 3401-3407.
  • [13] Bouhssira N., Abed S., Tomasella E., Cellier J., Mosbah A., Aida M.S., Jacquet M., 2006. Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation, Applied Surface Science, 252: 5594-5597.
  • [14] Fouad O.A., Ismail A.A., Zaki Z.I., Mohamed R.M., 2006. Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity, Applied Catalysis B: Environmental, 62: 144-149.
  • [15] Utlu G., 2019. Structural investigation of ZnO thin films obtained by annealing after thermal evaporation, Sakarya University Journal of Science, 23(4): 650-656.
  • [16] Herediaa E., Bojorgea C., Casanovaa J., Canepaa H., Craievichb A, Kellermann G., 2014. Nanostructured ZnO thin films prepared by sol–gel spin-coating,, Applied Surface Science, 317: 19-25.
  • [17] Orak I., Kocyigit A., Turut A., 2017. The surface morphology properties and respond illumination impact of ZnO/n-Si photodiode by prepared atomic layer deposition technique, Journal of Alloys and Compounds, 691: 873-879.
  • [18] Özmen A., Aydogan Ş., Yilmaz M., 2019. Fabrication of spray derived nanostructured n-ZnO/p-Si heterojunction diode and investigation of its response to dark and light, Ceramics International, 45: 14794-14805.
  • [19] Bedia F.Z., Bedia A., Benyoucef B., Hamzaoui S., 2014. Electrical characterization of n-ZnO/p-Si heterojunction prepared by spray pyrolysis technique, Physics Procedia, 55: 61-67.
  • [20] Lee J.Y, Choi Y.S., Kim J.H., Park M.O., Im S., 2002. Optimizing n-ZnO/p-Si heterojunctions for photodiode applications, Thin Solid Films, 403: 553-557.
  • [21] Jeong I.S., Kim J.H., Im S., 2003. Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure, Applied Physics Letters, 83: 2946-2948.
  • [22] Chaabouni F., Abaab M., Rezig B., 2006. Characterization of n-ZnO/p-Si films grown by magnetron sputtering, Superlattices and Microstructures, 39: 171-178.
  • [23] Cho S.G., Lee D.U., Pak S.W., Nahm T.U., Kim E.K., 2012. Fabrication of a n-ZnO/p-Si heterojunction diode by ultra-high vacuum magnetron sputtering, Thin Solid Films, 520: 5997-6000.
  • [24] Tata S., Chabane L., Zebbar N., Trari M., Kechouane M., Rahal A., 2020. Study of morphological and electrical properties of the ZnO/p-Si heterojunction: Application to sensing efficiency of low concentration of ethanol vapor at room temperature, Materials Science in Semiconductor Processing, 109: 104926.
  • [25] Yakuphanoglu F., Caglar Y., Caglar M., Ilican S., 2010. ZnO/p-Si heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate, Materials Science in Semiconductor Processing, 13: 137-140.
  • [26] Aksoy S., Caglar Y., 2012. Effect of ambient temperature on electrical properties of nanostructure n-ZnO/p-Si heterojunction diode, Superlattices and Microstructures 51: 613-625.
  • [27] Ocak Y.S., 2012. Electrical characterization of DC sputtered ZnO/p-Si heterojunction, Journal of Alloys and Compounds 513: 130-134.
  • [28] Algün G., 2018. ZnO kaplama miktarının n-ZnO/p-Si heteroeklem güneş hücresinin verimliliğine etkisi, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, 13 (2): 154-163.
  • [29] Orak İ., 2016. The performances photodiode and diode of ZnO thin film by atomic layer deposition technique, Solid State Communications, 247: 17-22.
  • [30] Kima H., Jungb M.J., Choib S., Choi B.J., 2020. ALD growth of ZnO on p-Si and electrical characterization of ZnO/p-Si heterojunctions, Materials Today Communications, 25: 101265.
  • [31] Sharma S., Periasamy C., 2014. A study on the electrical characteristic of n-ZnO/p-Si heterojunction diode prepared by vacuum coating technique, Superlattices and Microstructures, 73: 12-21.
  • [32] Reem Sami Ali R.S., P, Sharba K.S., Jabbar A.M., Chiad S.S., Abass K.H., Habubi N.F., 2020. Characterization of ZnO thin film/p-Si fabricated by vacuum evaporation method for solar cell applications, NeuroQuantology, 18 (1): 26-31.
  • [33] Ozkartal A. 2019. Characterization of the ITO/p-Si/Al contacts produced by thermal evaporation. Vacuum, 168: 108799.
  • [34] Ziel A., 1968. Solid State Physical Electronics, second ed. Prentice-Hall, New Jersey.
  • [35] Sze S.M., 1981. Physics of Semiconductor Devices, second ed. Wiley, New York.
  • [36] Rhoderick E.H., Williams R.H., 1978. Metal-Semiconductor Contacts. Oxford University Press.
  • [37] Ozkartal A., Temirci C., 2016. Relationship between photovoltaic and diode characteristic parameters in the Sn/p-Si Schottky type photovoltaics, Solar Energy, 132: 96–102.
  • [36] Özmenteş R., Temirci C., Ozkartal A., Ejderha K., Yildirim N. 2018. Characterization of CuO/n-Si heterojunction solar cells produced by thermal evaporation. Materials Science-Poland, 36 (4): 668-674.
  • [37] Cheung S.K., Cheung N.W., 1986. Extraction of Schottky diode parameters from forward current-voltage characteristics, Applied Physics Letters, 49 (2): 85–90.
There are 39 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Abdullah Özkartal 0000-0002-1556-6141

Project Number FYL-2018-7203
Publication Date September 17, 2021
Submission Date June 23, 2021
Acceptance Date September 1, 2021
Published in Issue Year 2021

Cite

IEEE A. Özkartal, “Termal buharlaştırma yöntemi ile üretilen n-ZnO/p-Si heteroeklem kontakların elektriksel ve optiksel karakterizasyonu”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 3, pp. 902–910, 2021, doi: 10.17798/bitlisfen.956341.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS