Research Article
BibTex RIS Cite

Yerel (Artvin-Şavşat) ve Tescilli Domates Çeşitlerinde Kuraklık Stresine Karşı Tolerans Seviyelerinin Araştırılması

Year 2021, , 1474 - 1485, 31.12.2021
https://doi.org/10.17798/bitlisfen.960504

Abstract

Kuraklığın artmasıyla birlikte domates ürün kalitesinde ve ürün veriminde ciddi düşüşler meydana gelmektedir. Stresin sebep olduğu verim ve kalitedeki düşüşleri azaltmanın en önemli yollarından biri de bitkilerin kuraklıktan etkilenme şeklinin bilinmesi ve kuraklığa toleranslı çeşitlerin belirlenmesidir. Bu nedenle mevcut çalışmada Artvin-Şavşat (yerel) ve SC2121 (tescilli) domates çeşitlerinin farklı kuraklık uygulamalarına karşı oluşturdukları toleranslarının yanıtlarının araştırılması amaçlanmıştır. Bu amaç doğrultusunda, domates çeşitlerinde çimlenme oranı, kök uzunluğu, nispi su içeriği (NSİ), lipid peroksidasyonu (TBARS), hidrojen peroksit (H2O2), prolin, toplam klorofil ve karotenoid içerikleri gibi temel stres parametreleri incelenmiştir. Bulgulara göre, Şavşat ve SC2121 çeşitlerinde çimlenme oranı, kök boyu ve NSİ tüm PEG uygulamalarıyla birlikte kontrole kıyasla önemli derecede azaldığı ve bu azalışın Şavşat çeşidinde daha düşük olduğu saptanmıştır. Şavşat ve SC2121’in TBARS ve H2O2 içeriklerinin artan PEG konsantrasyonuna bağlı olarak önemli derecede arttığı, bu artışın Şavşat çeşidinde daha düşük olduğu tespit edilmiştir. Prolin içeriği tüm PEG uygulamalarıyla birlikte her iki domates çeşidinde kontrole göre arttığı görülmüştür. Bu artışın ise Şavşat çeşidinde daha düşük olduğu belirlenmiştir. Domates çeşitlerinin toplam klorofil ve karotenoid içerikleri %10 PEG uygulamasıyla önemli derecede azaldığı ve bu azalışın Şavşat çeşidinde daha düşük olduğu görülmüştür. Elde edilen veriler ışığında, Artvin-Şavşat domates çeşidinin ise kuraklığa daha toleranslı olduğu belirlenmiştir.

References

  • [1] Yordanov, I., Velikova, V. and Tsonev, T. 2000. “Plant Responses of Drought, Acclimation, and Stress Tolerance”, Photosynthetica,38, 71-186.
  • [2] Sanchez, D.H., Schwabe, F., Erban, A., Udvardi, M.K. and Kopka, J., 2012. Comparative Metabolomics of Drought Acclimation in Model and Forage Legumes”, Plant Cell Environment, 35, 136-149.
  • [3] Talbi, S., Romero-Puertas, M.C., Hernandez, A., Terron, L., Ferchichi, A. and Sandalio, L.M. 2004. “Drought Tolerance in a Saharian Plant Oudneya Africana: Role of Antioxidant Defences”, Environmental and Experimental Botany, 111, 114-126.
  • [4] Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Gomathinayagam, M. and Panneerselvam, R. 2008. “Alterations in Morphological Parameters and Photosynthetic Pigment Responses of Catharanthus Roseus under Soil Water Deficits”, Colloid Surface B, 61, 298-303.
  • [5] Chaves, M.M. and Oliveira, M.M. 2004. “Mechanisms Underlying Plant Resilience to Water Decits: Prospects for Water-Saving Agriculture”, Journal of Experimental Botany, 5, 2365-2384.
  • [6] Sofo, A., Tuzio, A.C., Dichio, B. and Xiloyannis, C. 2005. “Inuence of Water Deficit and Rewatering in the Components of the Ascorbate-Glutathione Cycle in Four Interspecic Prunus Hybrids”, Plant Science, 169,403- 412.
  • [7] Morales, C. G., Pino, M. T., & Del Pozo, A. (2013). Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Scientia Horticulturae, 162, 234-241.
  • [8] Reddy, A.R., Chaitanya, K.V. and Vivekanandan, M. 2004. “Drought-Induced Responses of Photosynthesis and Antioxidant Metabolism in Higher Plants”, Journal of Plant Physiology, 161, 1189-1202.
  • [9] Yordanov, I., Velikova, V. and Tsonev, T. 2003. “Plant Responses to Drought and Stress Tolerance”, Bulgarian Journal of Plant Physiology, (Special Issue), 187-206.
  • [10] Almansouri, M., Kinet, J.M. and Lutts, S. 2001. “Effect of Salt and Osmotic Stresses on Germination in Durum Wheat (Triticum durum Desf.)”, Plant Soil, 231, 243-254.
  • [11] Hsiao, T.C. 1973. “Plant responses to water stress”, Annual Review of Plant Physiology, 24, 519-570.
  • [12] Foolad, M.R. and Lin, G.Y. 1997. “Genetic Potential for Salt Tolerance during Germination in Lycopersicon Species”, HortScience, 32, 296-300.
  • [13] Mohaewsh, O. 2016. “Utilizing Deficit rrigation to Enhance Growth Performance and Water- Use Efficiency of Eggplant in Arid Environments”, Journal of Agricultural Science and Technology, 18, 265-276.
  • [14] Gharibi, S., Tabatabaei, B.E.S., Saeidi, G. and Goli, S.A.H. 2016. “Effect of Drought Stress on Total Phenolic, Lipid Peroxidation, and Antioxidant Activity of Achillea species”, Applied Biochemistry and Biotechnology, 178, 796-809.
  • [15] Moustakas, M., Sperdouli, I., Kouna, T., Antonopoulou, C. I. and Therios, I. 2011. “Exogenous Proline Induces Soluble Sugar Accumulation and Alleviates Drought Stress Effects on Photosystem II Functioning of Arabidopsis thaliana Leaves”, Plant Growth Regulation, 65, 315-325.
  • [16] Khan, S.U., Gurmani, A.R.J.D., Qayyum, A., Abbasi, K.S., Liaquat, M. and Ahmad, Z. 2016. “Exogenously Applied Gibberelic Acid, Indolic Acetic Acid and Kinetin as Potential Regulators of Source-Sink Relationship, Physiological and Yield Attributes in Rice (Oryza sativa) Genotypes under Water Deficit Conditions”, International Journal of Agriculture and Biology, 18, 135-145.
  • [17] George, S., Jatoi, S.A., and Siddiqui, S.U. 2013. “Genotypic Diferences Against PEG Simulated Drought Stress in Tomato”, Pakistan Journal of Botany , 45, 1551-1556.
  • [18] Zdravkovic, J., Jovanovic, Z., Djordjevic, M., Girek, Z., Zdravkovic, M. and Stikic, R. 2013. Application of Stress Susceptibility Index for Drought Tolerance Screening of Tomato Populations”, Genetika-Belgrade, 45, 679-689.
  • [19] Pervez, M.A., Ayub, C.M., Khan, H.A., Shahid, M.A. and Ashraf, I. 2009. “Effect of Drought Stress on Growth, Yield and Seed Quality of Tomato (Lycopersicon esculentum L.)”, Pakistan Journal of Agricultural Sciences, 46,174-178.
  • [20] Sivakumar, R., & Srividhya, S. (2016). Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.). Advances in Horticultural Science, 30(1), 3-11.
  • [21] Ghorbanli, M., Bakhshi Khaniki, G., & Zakeri, A. (2012). Investigation on the effects of water stress on antioxidant compounds of Linum usitatissimum L. Iranian Journal of Medicinal and Aromatic Plants Research, 27(4), 647-658.
  • [22] Kabay, T, ve Yekbun, A.L.P. 2017. “Kuraklık Stresinin Bazı Yerli ve Ticari Domates Çeşitlerinde Bitki Gelişimi Üzerine Etkileri”, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27, 387-395.
  • [23] Çelik, Ö., Ayan, A. ve Atak, Ç. 2017. “Enzymatic and Non-Enzymatic Comparison of Two Different Industrial Tomato (Solanum lycopersicum) Varieties against Drought Stress”, Botanical Studies, 58, 1-13.
  • [24] Anonymous, 1993. “International Seed Testing Association. International Rules for Seed Testing”, Seed Science and Technology, 21 supplement.
  • [25] Basha, P.O., Sudarsanam, G., Reddy, M.MS. and Sankar, S. 2015. “Effect of PEG Induced Water Stress on Germination and Seedling Development of Tomato Germplasm”, International Journal of Recent Scientific Research, 6, 4044-4049.
  • [26] Castillo, F.J. 1996. “Antioxidative Protection in the Inducible CAM Plant Sedum album L. Following the Imposition of Severe Water Stress and Recovery”, Oecologia, 107, 469-477.
  • [27] Heath, R.L. and Packer, L. 1968. “Photoperoxidation in Isolated Chloroplast. I. Kinetics and Stoichiometry of Fatty Acid Peroxidation”, Archives of Biochemistry and Biophysics, 125, 189-198.
  • [28] Velikova, V., Yordanov, I. and Edreva, A., 2000. “Oxidative Stress and Some Antioxidant Systems in Acid Rain Treated Bean Plants Protective Role Of Exogenous Polyamines”, Plant Science, 59-66.
  • [29] Carillo P., Mastrolonardo, G., Nacca, F., Parisi, D., Verlotta, A., and Fuggi, A. 2008. “Nitrogen Metabolism in Durum Wheat under Salinity: Accumulation of Proline and Glycine Betaine”, Functional Plant Biology, 35, 412-426.
  • [30] Arnon, D. 1949. “Copper Enzymes in Isolated Chloroplasts, Polyphenol Oxidase in Beta vulgaris”, Plant Physiology, 24, 1-15.
  • [31] Lichtenthaler, H.K. (1987). “Impacts of Global Change on Tree Physiology and Forest Ecosystems”, Mohren, G.M.J., Kramer, K., Sabate, S., (Eds.), Academic Press, 8, 350-382.
  • [32] Lisar, S.Y.S., Motafakkerazad, R., Hossain, M.M. and Rahman, I.M.M. 2012. "Water Stress in Plants: Causes, Effects and Responses, In Water Stress; Prof. Ismail Md. Mofizur Rahman Ed., InTech: New York, USA.
  • [33] Turk, M.A., Rahman, A., Tawaha, M. and Lee, K.D. 2004. “Seed Germination and Seedling Growth of Three Lentil Cultivars under Moisture Stress”, Asian Journal of Plant Sciences, 3, 394-397.
  • [34] Soni, P., Rizwan, M., Bhatt, K.V., Mohapatra, T. and Singh, G. 2011. “In Vitro Response of Vigna aconitifolia to Drought Stress Induced by PEG-6000”, Journal of Stress Physiology and Biochemistry, 7, 108-121.
  • [35] Ghafoor, A. 2013. “Unveiling the Mess of Red Pottage through Gel Electrophoresis: A Robust and Reliable Method to Identify Vicia sativa and Lens culinaris from a Mixed Lot of Split “Red Dal”, Pakistan Journal of Botany, 45, 915-919.
  • [36] Ullah, U., Ashraf, M., Shahzad, S. M., Siddiqui, A.R., Piracha, M.A. and Suleman, M. 2016. “Growth Behavior of Tomato (Solanum lycopersicum L.) under Drought Stress in the Presence of Silicon and Plant Growth Promoting Rhizobacteria”, Soil and Environment, 35(1), 65-75.
  • [37] Gupta, B. and Huang, B. 2014. “Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization”, International Journal of Genomics, doi: http://dx.doi.org/10.1155/2014/701596.
  • [38] Sairam, R.K., Srivastava, G.C. and Saxena, D.C. 2000.” Increased Antioxidant Activity under Elevated Temperature: A Mechanism f Heat Stress Tolerance in Wheat Genotypes”, Biologia Plantarum, 43, 245-251.
  • [39] Moussa, H.R. and Abdel-Aziz, S.M. 2008. “Comparative Response of Drought Tolerant and Drought Sensitive Maize Genotypes to Water Stress”, Australian Journal of Crop Science, 1, 31-36.
  • [40] Hong-Bo, S., Xiao-Yan, C., Li-Ye, C., Xi-Ning, Z., Gang, W., Yong-Bing, Y., Chang-Xing, Z. and Zan-Min, H. 2006. “Investigation on The Relationship of Proline with Wheat Anti-Drought under Soil Water Deficits”, Colloids Surf B Biointerfaces, 53, 113-119.
  • [41] Mohammadkhani, N. and Heidari, R. 2008. “Drought-Induced Accumulation of Soluble Sugar and Proline in Two Maize Varieties”, World Applied Sciences Journal, 3, 448-453.
  • [42] Shtereva, L., Atanassova, B., Karcheva, T. and Petkov, V. 2008. “The Effect of Water Stress on The Growth Rate, Water Content and Proline Accumulation in Tomato Calli and Seedlings”, Acta Horticulturae, 789, 189-197.
  • [43] Ghorbanli, M., Gafarabad, M., Amirkian, T.A.N.N.A.Z. and Allahverdi, M.B. 2013. “Investigation of Proline, Total Protein, Chlorophyll, Ascorbate and Dehydroascorbate Changes under Drought Stress in Akria and Mobil Tomato Cultivars”, Iranian Journal of Plant Phsiology, 3, 651-658.

Investigation of Drought Stress Tolerance Levels in Landrace (Artvin-Şavşat) and Commercial Tomato Cultivars

Year 2021, , 1474 - 1485, 31.12.2021
https://doi.org/10.17798/bitlisfen.960504

Abstract

Remarkable decreases perform in tomato product quaility and product yield with the increasing of drought. One of the most important way to reduce the decreases in yield and quality caused by stress is to know the plants are affected by drought and to determine drought-tolerant cultivars. Therefore, in the present study, it was aimed to investigate the tolerances of Artvin-Şavşat (landrace) and SC2121 (commercial) tomato cultivars in different drought applications. For this purpose, changes in basic stress parameters such as germination rate, root length, relative water content (RWC), lipid peroxidation (TBARS), hydrogen peroxide (H2O2), proline, total chlorophyll and carotenoid contents were determined in tomato cultivars. According to the findings, it was determined that the germination rate, root length and RWC significantly decreased with all PEG applications in Şavşat and SC2121 cultivars compared to the control, and the decrease was lower in Şavşat cultivar. It was detected that TBARS and H2O2 contents of Şavşat and SC2121 significantly increased due to increasing PEG concentration, and the increase was lower in Şavşat cultivar. It was observed that the proline content increased with all PEG applications in both tomato cultivars compared to the control. It was determined that the increase was lower in Şavşat cultivar. In the light of the obtained data, it was determined that SC2121 was drought-sensitive and Artvin-Şavşat tomato cultivar was more drought- tolerant.

References

  • [1] Yordanov, I., Velikova, V. and Tsonev, T. 2000. “Plant Responses of Drought, Acclimation, and Stress Tolerance”, Photosynthetica,38, 71-186.
  • [2] Sanchez, D.H., Schwabe, F., Erban, A., Udvardi, M.K. and Kopka, J., 2012. Comparative Metabolomics of Drought Acclimation in Model and Forage Legumes”, Plant Cell Environment, 35, 136-149.
  • [3] Talbi, S., Romero-Puertas, M.C., Hernandez, A., Terron, L., Ferchichi, A. and Sandalio, L.M. 2004. “Drought Tolerance in a Saharian Plant Oudneya Africana: Role of Antioxidant Defences”, Environmental and Experimental Botany, 111, 114-126.
  • [4] Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Gomathinayagam, M. and Panneerselvam, R. 2008. “Alterations in Morphological Parameters and Photosynthetic Pigment Responses of Catharanthus Roseus under Soil Water Deficits”, Colloid Surface B, 61, 298-303.
  • [5] Chaves, M.M. and Oliveira, M.M. 2004. “Mechanisms Underlying Plant Resilience to Water Decits: Prospects for Water-Saving Agriculture”, Journal of Experimental Botany, 5, 2365-2384.
  • [6] Sofo, A., Tuzio, A.C., Dichio, B. and Xiloyannis, C. 2005. “Inuence of Water Deficit and Rewatering in the Components of the Ascorbate-Glutathione Cycle in Four Interspecic Prunus Hybrids”, Plant Science, 169,403- 412.
  • [7] Morales, C. G., Pino, M. T., & Del Pozo, A. (2013). Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Scientia Horticulturae, 162, 234-241.
  • [8] Reddy, A.R., Chaitanya, K.V. and Vivekanandan, M. 2004. “Drought-Induced Responses of Photosynthesis and Antioxidant Metabolism in Higher Plants”, Journal of Plant Physiology, 161, 1189-1202.
  • [9] Yordanov, I., Velikova, V. and Tsonev, T. 2003. “Plant Responses to Drought and Stress Tolerance”, Bulgarian Journal of Plant Physiology, (Special Issue), 187-206.
  • [10] Almansouri, M., Kinet, J.M. and Lutts, S. 2001. “Effect of Salt and Osmotic Stresses on Germination in Durum Wheat (Triticum durum Desf.)”, Plant Soil, 231, 243-254.
  • [11] Hsiao, T.C. 1973. “Plant responses to water stress”, Annual Review of Plant Physiology, 24, 519-570.
  • [12] Foolad, M.R. and Lin, G.Y. 1997. “Genetic Potential for Salt Tolerance during Germination in Lycopersicon Species”, HortScience, 32, 296-300.
  • [13] Mohaewsh, O. 2016. “Utilizing Deficit rrigation to Enhance Growth Performance and Water- Use Efficiency of Eggplant in Arid Environments”, Journal of Agricultural Science and Technology, 18, 265-276.
  • [14] Gharibi, S., Tabatabaei, B.E.S., Saeidi, G. and Goli, S.A.H. 2016. “Effect of Drought Stress on Total Phenolic, Lipid Peroxidation, and Antioxidant Activity of Achillea species”, Applied Biochemistry and Biotechnology, 178, 796-809.
  • [15] Moustakas, M., Sperdouli, I., Kouna, T., Antonopoulou, C. I. and Therios, I. 2011. “Exogenous Proline Induces Soluble Sugar Accumulation and Alleviates Drought Stress Effects on Photosystem II Functioning of Arabidopsis thaliana Leaves”, Plant Growth Regulation, 65, 315-325.
  • [16] Khan, S.U., Gurmani, A.R.J.D., Qayyum, A., Abbasi, K.S., Liaquat, M. and Ahmad, Z. 2016. “Exogenously Applied Gibberelic Acid, Indolic Acetic Acid and Kinetin as Potential Regulators of Source-Sink Relationship, Physiological and Yield Attributes in Rice (Oryza sativa) Genotypes under Water Deficit Conditions”, International Journal of Agriculture and Biology, 18, 135-145.
  • [17] George, S., Jatoi, S.A., and Siddiqui, S.U. 2013. “Genotypic Diferences Against PEG Simulated Drought Stress in Tomato”, Pakistan Journal of Botany , 45, 1551-1556.
  • [18] Zdravkovic, J., Jovanovic, Z., Djordjevic, M., Girek, Z., Zdravkovic, M. and Stikic, R. 2013. Application of Stress Susceptibility Index for Drought Tolerance Screening of Tomato Populations”, Genetika-Belgrade, 45, 679-689.
  • [19] Pervez, M.A., Ayub, C.M., Khan, H.A., Shahid, M.A. and Ashraf, I. 2009. “Effect of Drought Stress on Growth, Yield and Seed Quality of Tomato (Lycopersicon esculentum L.)”, Pakistan Journal of Agricultural Sciences, 46,174-178.
  • [20] Sivakumar, R., & Srividhya, S. (2016). Impact of drought on flowering, yield and quality parameters in diverse genotypes of tomato (Solanum lycopersicum L.). Advances in Horticultural Science, 30(1), 3-11.
  • [21] Ghorbanli, M., Bakhshi Khaniki, G., & Zakeri, A. (2012). Investigation on the effects of water stress on antioxidant compounds of Linum usitatissimum L. Iranian Journal of Medicinal and Aromatic Plants Research, 27(4), 647-658.
  • [22] Kabay, T, ve Yekbun, A.L.P. 2017. “Kuraklık Stresinin Bazı Yerli ve Ticari Domates Çeşitlerinde Bitki Gelişimi Üzerine Etkileri”, Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27, 387-395.
  • [23] Çelik, Ö., Ayan, A. ve Atak, Ç. 2017. “Enzymatic and Non-Enzymatic Comparison of Two Different Industrial Tomato (Solanum lycopersicum) Varieties against Drought Stress”, Botanical Studies, 58, 1-13.
  • [24] Anonymous, 1993. “International Seed Testing Association. International Rules for Seed Testing”, Seed Science and Technology, 21 supplement.
  • [25] Basha, P.O., Sudarsanam, G., Reddy, M.MS. and Sankar, S. 2015. “Effect of PEG Induced Water Stress on Germination and Seedling Development of Tomato Germplasm”, International Journal of Recent Scientific Research, 6, 4044-4049.
  • [26] Castillo, F.J. 1996. “Antioxidative Protection in the Inducible CAM Plant Sedum album L. Following the Imposition of Severe Water Stress and Recovery”, Oecologia, 107, 469-477.
  • [27] Heath, R.L. and Packer, L. 1968. “Photoperoxidation in Isolated Chloroplast. I. Kinetics and Stoichiometry of Fatty Acid Peroxidation”, Archives of Biochemistry and Biophysics, 125, 189-198.
  • [28] Velikova, V., Yordanov, I. and Edreva, A., 2000. “Oxidative Stress and Some Antioxidant Systems in Acid Rain Treated Bean Plants Protective Role Of Exogenous Polyamines”, Plant Science, 59-66.
  • [29] Carillo P., Mastrolonardo, G., Nacca, F., Parisi, D., Verlotta, A., and Fuggi, A. 2008. “Nitrogen Metabolism in Durum Wheat under Salinity: Accumulation of Proline and Glycine Betaine”, Functional Plant Biology, 35, 412-426.
  • [30] Arnon, D. 1949. “Copper Enzymes in Isolated Chloroplasts, Polyphenol Oxidase in Beta vulgaris”, Plant Physiology, 24, 1-15.
  • [31] Lichtenthaler, H.K. (1987). “Impacts of Global Change on Tree Physiology and Forest Ecosystems”, Mohren, G.M.J., Kramer, K., Sabate, S., (Eds.), Academic Press, 8, 350-382.
  • [32] Lisar, S.Y.S., Motafakkerazad, R., Hossain, M.M. and Rahman, I.M.M. 2012. "Water Stress in Plants: Causes, Effects and Responses, In Water Stress; Prof. Ismail Md. Mofizur Rahman Ed., InTech: New York, USA.
  • [33] Turk, M.A., Rahman, A., Tawaha, M. and Lee, K.D. 2004. “Seed Germination and Seedling Growth of Three Lentil Cultivars under Moisture Stress”, Asian Journal of Plant Sciences, 3, 394-397.
  • [34] Soni, P., Rizwan, M., Bhatt, K.V., Mohapatra, T. and Singh, G. 2011. “In Vitro Response of Vigna aconitifolia to Drought Stress Induced by PEG-6000”, Journal of Stress Physiology and Biochemistry, 7, 108-121.
  • [35] Ghafoor, A. 2013. “Unveiling the Mess of Red Pottage through Gel Electrophoresis: A Robust and Reliable Method to Identify Vicia sativa and Lens culinaris from a Mixed Lot of Split “Red Dal”, Pakistan Journal of Botany, 45, 915-919.
  • [36] Ullah, U., Ashraf, M., Shahzad, S. M., Siddiqui, A.R., Piracha, M.A. and Suleman, M. 2016. “Growth Behavior of Tomato (Solanum lycopersicum L.) under Drought Stress in the Presence of Silicon and Plant Growth Promoting Rhizobacteria”, Soil and Environment, 35(1), 65-75.
  • [37] Gupta, B. and Huang, B. 2014. “Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization”, International Journal of Genomics, doi: http://dx.doi.org/10.1155/2014/701596.
  • [38] Sairam, R.K., Srivastava, G.C. and Saxena, D.C. 2000.” Increased Antioxidant Activity under Elevated Temperature: A Mechanism f Heat Stress Tolerance in Wheat Genotypes”, Biologia Plantarum, 43, 245-251.
  • [39] Moussa, H.R. and Abdel-Aziz, S.M. 2008. “Comparative Response of Drought Tolerant and Drought Sensitive Maize Genotypes to Water Stress”, Australian Journal of Crop Science, 1, 31-36.
  • [40] Hong-Bo, S., Xiao-Yan, C., Li-Ye, C., Xi-Ning, Z., Gang, W., Yong-Bing, Y., Chang-Xing, Z. and Zan-Min, H. 2006. “Investigation on The Relationship of Proline with Wheat Anti-Drought under Soil Water Deficits”, Colloids Surf B Biointerfaces, 53, 113-119.
  • [41] Mohammadkhani, N. and Heidari, R. 2008. “Drought-Induced Accumulation of Soluble Sugar and Proline in Two Maize Varieties”, World Applied Sciences Journal, 3, 448-453.
  • [42] Shtereva, L., Atanassova, B., Karcheva, T. and Petkov, V. 2008. “The Effect of Water Stress on The Growth Rate, Water Content and Proline Accumulation in Tomato Calli and Seedlings”, Acta Horticulturae, 789, 189-197.
  • [43] Ghorbanli, M., Gafarabad, M., Amirkian, T.A.N.N.A.Z. and Allahverdi, M.B. 2013. “Investigation of Proline, Total Protein, Chlorophyll, Ascorbate and Dehydroascorbate Changes under Drought Stress in Akria and Mobil Tomato Cultivars”, Iranian Journal of Plant Phsiology, 3, 651-658.
There are 43 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Mehmet Demiralay 0000-0001-6528-4591

Publication Date December 31, 2021
Submission Date July 1, 2021
Acceptance Date October 8, 2021
Published in Issue Year 2021

Cite

IEEE M. Demiralay, “Yerel (Artvin-Şavşat) ve Tescilli Domates Çeşitlerinde Kuraklık Stresine Karşı Tolerans Seviyelerinin Araştırılması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 4, pp. 1474–1485, 2021, doi: 10.17798/bitlisfen.960504.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr