Research Article
BibTex RIS Cite

Derik Halhalı Zeytin Çekirdeğinden Çevre Dostu Selülozik Manyetik Nano-Adsorbent Üretimi ve Benzen Gideriminde Kullanılması

Year 2021, , 1535 - 1551, 31.12.2021
https://doi.org/10.17798/bitlisfen.982620

Abstract

Uçucu organik bir bileşik (UOB) olan benzen, kimyasal ve petrokimyasal gibi faaliyetlerle sanayiden ve endüstriden atmosfere salınmaktadır. Benzen, canlı sağlığı ve çevre için ağır kirliliklerden biri olup, kanserojen, mutajenik ve oldukça toksik polar olmayan kirleticidir. İnsan sağlığı ve ekolojik çevre için bir potansiyel tehlikedir. Bu sebeple benzenin bir kirletici olarak atmosferden uzaklaştırılması büyük önem taşımaktadır. Bu çevresel iyileştirme çalışmasında, Derik Halhalı zeytininin çekirdeği bir doğal selüloz (DS) kaynağı olarak manyetit (Fe3O4) modifikasyonunda kullanıldı. Başarıyla üretilen Fe3O4/DS nano-adsorbentin benzen giderimine karşı adsorpsiyon özellikleri incelendi. Birlikte çökeltme yöntemiyle elde edilen Fe3O4/DS nano-adsorbenti SEM-EDS, FTIR ve BET analizleri ile karakterize edildi. Benzen giderim prosesinde, benzen başlangıç konsantrasyonu, adsorbent miktarı, adsorpsiyon süresi ve adsorpsiyon sıcaklığı gibi farklı parametrelerin etkileri değerlendirildi. Optimum değerler olarak belirlenen 90 dakika adsorpsiyon süresi, 15 ppm benzen başlangıç konsantrasyonu, 100 mg adsorbent miktarı ve 25°C adsorpsiyon sıcaklığı gibi koşullar altında benzen adsorpsiyon kapasitesi 298,15 mg/g olarak bulundu. Bu sonuç, başarıyla üretilen Fe3O4/DS nano-adsorbentin UOB kirleticilerin giderimindeki uygulama potansiyelini ortaya koymaktadır. Öte yandan, Quasi-birinci-dereceden kinetik modeli takip eden gaz halindeki benzenin Fe3O4/DS nano-adsorbenti üzerine adsorpsiyon prosesi fiziksel adsorpsiyon mekanizmasını işaret etmektedir. Ayrıca, 1.74 kJ mol-1 olarak hesaplanan E değeri (Dubinin-Radushkevich model sabiti) adsorpsiyon prosesinin fiziksel etkileşim mekanizması üzerinden gerçekleştiğini desteklemektedir. Son olarak, beş döngüden sonra Fe3O4/DS nano-adsorbenti %90.61'lik yeniden kullanım verimliliği sürdürdüğü görüldü, bu da nano-adsorbentin pratik uygulamalarda büyük potansiyele sahip olduğu anlamına gelir.

References

  • Chavadej S., Kiatubolpaiboon W., Rangsunvigit P., Sreethawong T. 2007. A combined multistage corona discharge and catalytic system for gaseous benzene removal, Journal of Molecular Catalysis A: Chemical, 263 (1-2): 128-136.
  • Zaitan H., Korrir A., Chafik T., Bianchi D. 2013. Evaluation of the potential of volatile organic compound (di-methyl benzene) removal using adsorption on natural minerals compared to commercial oxides, Journal of hazardous materials, 262: 365-376.
  • Ozkaya M., Cakir E., Gokbayrak Z., Ercan H., Taskin N.. 2006. Morphological and molecular characterization of Derik Halhali olive (Olea europaea L.) accessions grown in Derik–Mardin province of Turkey, Scientia Horticulturae, 108 (2): 205-209.
  • Shendi E.G., Özay D.S., Özkaya M.T., Üstünel N.F. 2019. Chemical characterization and storage stability of extra virgin olive oil extracted from Derik Halhalı cultivar, Croatian journal of food science and technology, 11 (1): 52-58.
  • Hokkanen S., Bhatnagar A., Sillanpää M. 2016. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water research, 91: 156-173.
  • Maleki A., Kamalzare M. 2014. Fe3O4@cellulose composite nanocatalyst: preparation, characterization and application in the synthesis of benzodiazepines, Catalysis Communications, 53: 67-71.
  • Alslaibi T.M., Abustan I., Ahmad M.A., Foul A.A. 2014. Kinetics and equilibrium adsorption of iron (II), lead (II), and copper (II) onto activated carbon prepared from olive stone waste, Desalination and water treatment, 52 (40-42): 7887-7897.
  • Alu’datt M.H., Alli I., Ereifej K., Alhamad M.N., Alsaad A., Rababeh T. 2011. Optimisation and characterisation of various extraction conditions of phenolic compounds and antioxidant activity in olive seeds, Natural product research, 25 (9): 876-889.
  • Cao L., Cheng Z., Yan M., Chen Y. 2019. Anisotropic rubber nanocomposites via magnetic-induced alignment of Fe3O4/cellulose nanocrystals hybrids obtained by templated assembly, Chemical Engineering Journal, 363: 203-212.
  • Low L.E., Tey B.T., Ong B.H., Tang S.Y. 2018. A facile and rapid sonochemical synthesis of monodispersed Fe3O4@cellulose nanocrystal nanocomposites without inert gas protection, Asia‐Pacific Journal of Chemical Engineering, 13 (4): e2209.
  • Kutluay S., Baytar O., Şahin Ö. 2019. Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from elaeagnus angustifolia seeds, Journal of Environmental Chemical Engineering, 7 (2): 102947.
  • Zhao Z., Wang S., Yang Y., Li X., Li J., Li Z. 2015. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1), Chemical Engineering Journal, 259: 79-89.
  • Azizi A. 2020. Green Synthesis of Fe3O4 Nanoparticles and Its Application in Preparation of Fe3O4/Cellulose Magnetic Nanocomposite: A Suitable Proposal for Drug Delivery Systems, Journal of Inorganic and Organometallic Polymers and Materials, 30: 3552–3561.
  • de Luna M.D.G., Flores E.D., Genuino D.A.D., Futalan C.M., Wan M.W. 2013. Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls—Optimization, isotherm and kinetic studies, Journal of the Taiwan Institute of Chemical Engineers, 44 (4): 646-653.
  • Ece M.Ş., Kutluay S., Şahin Ö., Horoz S. 2020. Development of Novel Fe3O4/AC@SiO2@1,4-DAAQ Magnetic Nanoparticles with Outstanding VOC Removal Capacity: Characterization, Optimization, Reusability, Kinetics, and Equilibrium Studies, Industrial & Engineering Chemistry Research, 59 (48): 21106-21123.
  • Kutluay S. 2021. Excellent adsorptive performance of novel magnetic nano-adsorbent functionalized with 8-hydroxyquinoline-5-sulfonic acid for the removal of volatile organic compounds (BTX) vapors, Fuel, 287: 119691.
  • Kutluay S., Temel F. 2021. Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 609: 125848.
  • Dou B., Hu Q., Li J., Qiao S., Hao Z. 2011. Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry, Journal of hazardous materials, 186 (2-3): 1615-1624.
  • Tsai J.H., Chiang H.M., Huang G.Y., Chiang H.L. 2008. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers, Journal of hazardous materials, 154 (1-3): 1183-1191.
  • Qian Q., Gong C., Zhang Z., Yuan G. 2015. Removal of VOCs by activated carbon microspheres derived from polymer: a comparative study, Adsorption, 21 (4): 333-341.
  • Mao H., Huang R., Hashisho Z., Wang S., Chen H., Wang H., Zhou D. 2016. Adsorption of toluene and acetone vapors on microwave-prepared activated carbon from agricultural residues: isotherms, kinetics, and thermodynamics studies, Research on Chemical Intermediates, 42 (4): 3359-3371.
  • Ramirez D., Sullivan P.D., Rood M.J., Hay K.J. 2004. Equilibrium adsorption of phenol-, tire-, and coal-derived activated carbons for organic vapors, Journal of environmental engineering, 130 (3): 231-241.
  • Chiang Y.C., Chiang P.C., Huang C.P. 2001. Effects of pore structure and temperature on VOC adsorption on activated carbon, Carbon, 39 (4): 523-534.
  • Chuang C., Chiang P., Chang E. 2003. Modeling VOCs adsorption onto activated carbon, Chemosphere, 53 (1): 17-27.
  • Freundlich H. 1906. Over the adsorption in solution, The Journal of Physical Chemistry, 57: 385-471.
  • Sari A., Tuzen M., Citak D., Soylak M. 2007. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb (II) from aqueous solution onto Turkish kaolinite clay, Journal of hazardous materials, 149 (2): 283-291.
  • Aziz A., Kim M., Kim S., Kim K.S. 2017. Adsorption and kinetic studies of volatile organic compounds (VOCs) on seed assisted template free ZSM-5 zeolite in air, Journal of Nanotechnology & Advanced Materials, 5: 1-9.
  • Song G., Zhu X., Chen R., Liao Q., Ding Y.D., Chen L. 2016. An investigation of CO2 adsorption kinetics on porous magnesium oxide, Chemical Engineering Journal, 283: 175-183.
  • Wang Y., Tao H., Yu D., Chang C. 2018. Performance assessment of ordered porous electrospun honeycomb fibers for the removal of atmospheric polar volatile organic compounds, Nanomaterials, 8 (5): 350.
  • Foo K.Y., Hameed B.H. 2010. Insights into the modeling of adsorption isotherm systems, Chemical engineering journal, 156 (1): 2-10.
  • Sadeghalvad B., Azadmehr A., Hezarkhani A. 2016. Enhancing adsorptive removal of sulfate by metal layered double hydroxide functionalized Quartz-Albitophire iron ore waste: preparation, characterization and properties, RSC Advances, 6 (72): 67630-67642.
  • Wang C., Zhong H., Wu W., Pan C., Wei X., Zhou G., Yang F. 2019. Fe3O4@C Core–Shell Carbon Hybrid Materials as Magnetically Separable Adsorbents for the Removal of Dibenzothiophene in Fuels, ACS Omega, 4 (1): 1652-1661.
  • Zou W., Gao B., Ok Y.S., Dong L. 2019. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review, Chemosphere, 218: 845-859.
  • Gan F., Cheng B., Jin Z., Dai Z., Wang B., Yang L., Jiang X. 2021. Hierarchical porous biochar from plant-based biomass through selectively removing lignin carbon from biochar for enhanced removal of toluene, Chemosphere, 279: 130514.
  • Auta M., Hameed B. 2014. Adsorption of carbon dioxide by diethanolamine activated alumina beads in a fixed bed, Chemical Engineering Journal, 253: 350-355.

Production of Eco-Friendly Cellulosic Magnetic Nano-Adsorbent from Derik Halhali Olive Seed and Its Use in Benzene Removal

Year 2021, , 1535 - 1551, 31.12.2021
https://doi.org/10.17798/bitlisfen.982620

Abstract

Benzene, a volatile organic compound (VOC), is released into the atmosphere from industry and industry through chemical and petrochemical activities. Benzene is one of the heavy pollutants for living health and the environment, and it is a carcinogenic, mutagenic and highly toxic non-polar pollutant. It is a potential hazard to human health and the ecological environment. For this reason, it is of great importance to remove benzene from the atmosphere as a pollutant. In this environmental improvement study, Derik Halhali olive seed was used as a natural cellulose (NC) source in the modification of magnetite (Fe3O4). The adsorption properties of the successfully produced Fe3O4/NC nano-adsorbent against benzene removal were investigated. Fe3O4/NC nano-adsorbent obtained by co-precipitation method was characterized by SEM-EDS, FTIR and BET analyses. In the benzene removal process, the effects of different parameters such as benzene initial concentration, adsorbent amount, adsorption time and adsorption temperature were evaluated. Benzene adsorption capacity was found to be 298.15 mg/g under the optimum values such as 90 min adsorption time, 15 ppm initial concentration of benzene, 100 mg adsorbent amount and 25°C adsorption temperature. This result reveals the application potential of the successfully produced Fe3O4/NC nano-adsorbent in the removal of VOC pollutants. On the other hand, the adsorption process of gaseous benzene on Fe3O4/NC nano-adsorbent following the Quasi-first-order kinetic model indicates the physical adsorption mechanism. In addition, the E value (Dubinin-Radushkevich model constant) calculated as 1.74 kJ/mol supports that the adsorption process takes place through the physical interaction mechanism. Finally, after five cycles, the Fe3O4/NC nano-adsorbent was found to maintain a reuse efficiency of 90.61%, meaning that the nano-adsorbent has great potential in practical applications.

References

  • Chavadej S., Kiatubolpaiboon W., Rangsunvigit P., Sreethawong T. 2007. A combined multistage corona discharge and catalytic system for gaseous benzene removal, Journal of Molecular Catalysis A: Chemical, 263 (1-2): 128-136.
  • Zaitan H., Korrir A., Chafik T., Bianchi D. 2013. Evaluation of the potential of volatile organic compound (di-methyl benzene) removal using adsorption on natural minerals compared to commercial oxides, Journal of hazardous materials, 262: 365-376.
  • Ozkaya M., Cakir E., Gokbayrak Z., Ercan H., Taskin N.. 2006. Morphological and molecular characterization of Derik Halhali olive (Olea europaea L.) accessions grown in Derik–Mardin province of Turkey, Scientia Horticulturae, 108 (2): 205-209.
  • Shendi E.G., Özay D.S., Özkaya M.T., Üstünel N.F. 2019. Chemical characterization and storage stability of extra virgin olive oil extracted from Derik Halhalı cultivar, Croatian journal of food science and technology, 11 (1): 52-58.
  • Hokkanen S., Bhatnagar A., Sillanpää M. 2016. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity, Water research, 91: 156-173.
  • Maleki A., Kamalzare M. 2014. Fe3O4@cellulose composite nanocatalyst: preparation, characterization and application in the synthesis of benzodiazepines, Catalysis Communications, 53: 67-71.
  • Alslaibi T.M., Abustan I., Ahmad M.A., Foul A.A. 2014. Kinetics and equilibrium adsorption of iron (II), lead (II), and copper (II) onto activated carbon prepared from olive stone waste, Desalination and water treatment, 52 (40-42): 7887-7897.
  • Alu’datt M.H., Alli I., Ereifej K., Alhamad M.N., Alsaad A., Rababeh T. 2011. Optimisation and characterisation of various extraction conditions of phenolic compounds and antioxidant activity in olive seeds, Natural product research, 25 (9): 876-889.
  • Cao L., Cheng Z., Yan M., Chen Y. 2019. Anisotropic rubber nanocomposites via magnetic-induced alignment of Fe3O4/cellulose nanocrystals hybrids obtained by templated assembly, Chemical Engineering Journal, 363: 203-212.
  • Low L.E., Tey B.T., Ong B.H., Tang S.Y. 2018. A facile and rapid sonochemical synthesis of monodispersed Fe3O4@cellulose nanocrystal nanocomposites without inert gas protection, Asia‐Pacific Journal of Chemical Engineering, 13 (4): e2209.
  • Kutluay S., Baytar O., Şahin Ö. 2019. Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from elaeagnus angustifolia seeds, Journal of Environmental Chemical Engineering, 7 (2): 102947.
  • Zhao Z., Wang S., Yang Y., Li X., Li J., Li Z. 2015. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1), Chemical Engineering Journal, 259: 79-89.
  • Azizi A. 2020. Green Synthesis of Fe3O4 Nanoparticles and Its Application in Preparation of Fe3O4/Cellulose Magnetic Nanocomposite: A Suitable Proposal for Drug Delivery Systems, Journal of Inorganic and Organometallic Polymers and Materials, 30: 3552–3561.
  • de Luna M.D.G., Flores E.D., Genuino D.A.D., Futalan C.M., Wan M.W. 2013. Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls—Optimization, isotherm and kinetic studies, Journal of the Taiwan Institute of Chemical Engineers, 44 (4): 646-653.
  • Ece M.Ş., Kutluay S., Şahin Ö., Horoz S. 2020. Development of Novel Fe3O4/AC@SiO2@1,4-DAAQ Magnetic Nanoparticles with Outstanding VOC Removal Capacity: Characterization, Optimization, Reusability, Kinetics, and Equilibrium Studies, Industrial & Engineering Chemistry Research, 59 (48): 21106-21123.
  • Kutluay S. 2021. Excellent adsorptive performance of novel magnetic nano-adsorbent functionalized with 8-hydroxyquinoline-5-sulfonic acid for the removal of volatile organic compounds (BTX) vapors, Fuel, 287: 119691.
  • Kutluay S., Temel F. 2021. Silica gel based new adsorbent having enhanced VOC dynamic adsorption/desorption performance, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 609: 125848.
  • Dou B., Hu Q., Li J., Qiao S., Hao Z. 2011. Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry, Journal of hazardous materials, 186 (2-3): 1615-1624.
  • Tsai J.H., Chiang H.M., Huang G.Y., Chiang H.L. 2008. Adsorption characteristics of acetone, chloroform and acetonitrile on sludge-derived adsorbent, commercial granular activated carbon and activated carbon fibers, Journal of hazardous materials, 154 (1-3): 1183-1191.
  • Qian Q., Gong C., Zhang Z., Yuan G. 2015. Removal of VOCs by activated carbon microspheres derived from polymer: a comparative study, Adsorption, 21 (4): 333-341.
  • Mao H., Huang R., Hashisho Z., Wang S., Chen H., Wang H., Zhou D. 2016. Adsorption of toluene and acetone vapors on microwave-prepared activated carbon from agricultural residues: isotherms, kinetics, and thermodynamics studies, Research on Chemical Intermediates, 42 (4): 3359-3371.
  • Ramirez D., Sullivan P.D., Rood M.J., Hay K.J. 2004. Equilibrium adsorption of phenol-, tire-, and coal-derived activated carbons for organic vapors, Journal of environmental engineering, 130 (3): 231-241.
  • Chiang Y.C., Chiang P.C., Huang C.P. 2001. Effects of pore structure and temperature on VOC adsorption on activated carbon, Carbon, 39 (4): 523-534.
  • Chuang C., Chiang P., Chang E. 2003. Modeling VOCs adsorption onto activated carbon, Chemosphere, 53 (1): 17-27.
  • Freundlich H. 1906. Over the adsorption in solution, The Journal of Physical Chemistry, 57: 385-471.
  • Sari A., Tuzen M., Citak D., Soylak M. 2007. Equilibrium, kinetic and thermodynamic studies of adsorption of Pb (II) from aqueous solution onto Turkish kaolinite clay, Journal of hazardous materials, 149 (2): 283-291.
  • Aziz A., Kim M., Kim S., Kim K.S. 2017. Adsorption and kinetic studies of volatile organic compounds (VOCs) on seed assisted template free ZSM-5 zeolite in air, Journal of Nanotechnology & Advanced Materials, 5: 1-9.
  • Song G., Zhu X., Chen R., Liao Q., Ding Y.D., Chen L. 2016. An investigation of CO2 adsorption kinetics on porous magnesium oxide, Chemical Engineering Journal, 283: 175-183.
  • Wang Y., Tao H., Yu D., Chang C. 2018. Performance assessment of ordered porous electrospun honeycomb fibers for the removal of atmospheric polar volatile organic compounds, Nanomaterials, 8 (5): 350.
  • Foo K.Y., Hameed B.H. 2010. Insights into the modeling of adsorption isotherm systems, Chemical engineering journal, 156 (1): 2-10.
  • Sadeghalvad B., Azadmehr A., Hezarkhani A. 2016. Enhancing adsorptive removal of sulfate by metal layered double hydroxide functionalized Quartz-Albitophire iron ore waste: preparation, characterization and properties, RSC Advances, 6 (72): 67630-67642.
  • Wang C., Zhong H., Wu W., Pan C., Wei X., Zhou G., Yang F. 2019. Fe3O4@C Core–Shell Carbon Hybrid Materials as Magnetically Separable Adsorbents for the Removal of Dibenzothiophene in Fuels, ACS Omega, 4 (1): 1652-1661.
  • Zou W., Gao B., Ok Y.S., Dong L. 2019. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review, Chemosphere, 218: 845-859.
  • Gan F., Cheng B., Jin Z., Dai Z., Wang B., Yang L., Jiang X. 2021. Hierarchical porous biochar from plant-based biomass through selectively removing lignin carbon from biochar for enhanced removal of toluene, Chemosphere, 279: 130514.
  • Auta M., Hameed B. 2014. Adsorption of carbon dioxide by diethanolamine activated alumina beads in a fixed bed, Chemical Engineering Journal, 253: 350-355.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Sinan Kutluay 0000-0001-9493-918X

Mehmet Şakir Ece 0000-0002-9411-314X

Ömer Şahin 0000-0003-4575-3762

Zafer Kahraman 0000-0003-2337-266X

Ferat Önal 0000-0002-0575-0826

Fesih Atku 0000-0002-5494-028X

Publication Date December 31, 2021
Submission Date August 13, 2021
Acceptance Date November 15, 2021
Published in Issue Year 2021

Cite

IEEE S. Kutluay, M. Ş. Ece, Ö. Şahin, Z. Kahraman, F. Önal, and F. Atku, “Derik Halhalı Zeytin Çekirdeğinden Çevre Dostu Selülozik Manyetik Nano-Adsorbent Üretimi ve Benzen Gideriminde Kullanılması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 4, pp. 1535–1551, 2021, doi: 10.17798/bitlisfen.982620.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr