Research Article
BibTex RIS Cite

Haddeleme ile Birleştirilen AISI 430/Al 1050 /AISI 304 Tabakalı Kompozitlerde Isıl işlemin Ara Yüzey ve Mekanik Özelliklere Etkisi

Year 2022, , 61 - 70, 24.03.2022
https://doi.org/10.17798/bitlisfen.992099

Abstract

Bu çalışmada, haddeleme işlemi ile AISI 304 östenitik paslanmaz çelik ve AISI 430 ferritik paslanmaz çelik sacları araya ticari saflıkta 1050 alüminyum levha konularak lamine kompozit üretilmiştir. Üretim sonrası farklı sıcaklık ve sürede ısıl işlem uygulanmış kompozit plakaların ara yüzey bağ mukavemeti, mikroyapısı ve mekanik özellikleri incelenmiştir. Kompozitlerin mekanik özellikleri çekme testi, mikro sertlik ölçümü, sıyırma testi ile belirlenmiş, taramalı elektron mikroskobu (SEM) ve enerji dağılımı spektroskopisi (EDS) ile karakterize edilmiştir. Uygulanan ısıl işlem parametreleri arasında yüksek mekanik özellik (434,95MPa) ve süneklik (%27,16) sağlaması yönünden ve işlem kolaylığı bakımından 450˚C-12 h uygun görülmüştür. 550˚C’de 12 h yapılan ısıl işlem sonrasında ise katmanlar arasındaki bağ kuvvetinin sıfıra yakın bir değere düştüğü belirlenmiştir.

Supporting Institution

Karabük Üniversitesi

Project Number

FDT-2020-2288

Thanks

Bu çalışma Karabük Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir (FDT-2020-2288). Ayrıca malzeme tedariki için Kocaoğlu Paslanmaz firmasına teşekkür ederiz.

References

  • [1] Dudek A, Lisiecka B, Ulewicz R. 2017. The effect of alloying method on the structure and properties of sintered stainless steel. Arch. Metall. Mater. 62:.
  • [2] Presuel-Moreno F, Scully JR, Sharp SR. 2009. Literature review of commercially available alloys that have potential as low-cost corrosion resistant concrete reinforcement. Corros. 2009 .
  • [3] Li Z, Zhao J, Jia F, Liang X, Zhang Q, Yuan X, Jiao S, Jiang Z. 2020. Interfacial characteristics and mechanical properties of duplex stainless steel bimetal composite by heat treatment. Mater Sci Eng A 787:139513.
  • [4] Casalino G, Angelastro A, Perulli P, Casavola C, Moramarco V. 2018. Study on the fiber laser/TIG weldability of AISI 304 and AISI 410 dissimilar weld. J Manuf Process 35:216–225.
  • [5] Bina MH, Jamali M, Shamanian M, Sabet H. 2014. Investigation on the resistance spot-welded austenitic/ferritic stainless steel. Int J Adv Manuf Technol 75(9–12):1371–1379.
  • [6] Lakshminarayanan AK, Shanmugam K, Balasubramanian V. 2009. Effect of welding processes on tensile and impact properties, hardness and microstructure of AISI 409M ferritic stainless joints fabricated by duplex stainless steel filler metal. J iron steel Res Int 16(5):66–72.
  • [7] Berretta JR, de Rossi W, das Neves MDM, de Almeida IA, Junior NDV. 2007. Pulsed Nd: YAG laser welding of AISI 304 to AISI 420 stainless steels. Opt Lasers Eng 45(9):960–966.
  • [8] Sharma G, Kumar A, Sharma S, Naushad M, Dwivedi RP, ALOthman ZA, Mola GT. 2019. Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J King Saud Univ 31(2):257–269.
  • [9] Li Z, Zhao J, Jia F, Lu Y, Liang X, Yuan X, Jiao S, Zhou C, Jiang Z. 2020. Hot deformation behaviour and interfacial characteristics of bimetal composite at elevated temperatures. Intermetallics 125:106893.
  • [10] Jindal V, Srivastava VC, Das A, Ghosh RN. 2006. Reactive diffusion in the roll bonded iron–aluminum system. Mater Lett 60(13–14):1758–1761.
  • [11] Naoi D, Kajihara M. 2007. Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures. Mater Sci Eng A 459(1–2):375–382.
  • [12] Lesuer DR, Syn CK, Sherby OD, Wadsworth J, Lewandowski JJ, Hunt WH. 1996. Mechanical behaviour of laminated metal composites. Int Mater Rev 41(5):169–197.
  • [13] JEKLA MLS, NA O, MATERIALIH K, VRO IZ, VALJANJEM IM. 2017. Mechanical Properties of Laminated Steel-Based Composite Materials Fabricated by Hot Rolling. Mater Tehnol 51(4):557–561.
  • [14] Mali VI, Bataev AA, Maliutina IN, Kurguzov VD, Bataev IA, Esikov MA, Lozhkin VS. 2017. Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding. Int J Adv Manuf Technol 93(9):4285–4294.
  • [15] Liu K, Li Y, Xia C, Wang J. 2017. Microstructural evolution and properties of TLP diffusion bonding super-Ni/NiCr laminated composite to Ti-6Al-4V alloy with Cu interlayer. Mater Des 135:184–196.
  • [16] Gao X, Wei D, Jiang Z. 2012. Analysis of temperature field in liquid-solid bimetal casting of laminated metal composite. Adv Sci Lett 15(1):48–52.
  • [17] Farid A, Guo S. 2007. On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites. Acta Mater 55(4):1467–1477.
  • [18] Cepeda-Jiménez CM, Hidalgo P, Pozuelo M, Ruano OA, Carreño F. 2010. Influence of constituent materials on the impact toughness and fracture mechanisms of hot-roll-bonded aluminum multilayer laminates. Metall Mater Trans A 41(1):61.
  • [19] Huang Q, Yang X, Ma L, Zhou C, Liu G, Li H. 2014. Interface-correlated characteristics of stainless steel/carbon steel plate fabricated by AAWIV and hot rolling. J Iron Steel Res Int 21(10):931–937.
  • [20] Yuan J, Pang Y, Li T. 2011. Multilayer clad plate of stainless steel/aluminum/aluminum alloy. J Wuhan Univ Technol Sci Ed 26(1):111–113.
  • [21] Lee KS, Yoon DH, Lee SE, Lee YS. 2011. The effect of thermomechanical treatment on the interface microstructure and local mechanical properties of roll bonded pure Ti/439 stainless steel multilayered materials. Procedia Eng 10:3459–3464.
  • [22] Danesh Manesh H, Karimi Taheri A. 2004. Study of mechanisms of cold roll welding of aluminium alloy to steel strip. Mater Sci Technol 20(8):1064–1068.
  • [23] Tabata T, Masaki S, Azekura K. 1989. Bond criterion in cold pressure welding of aluminium. Mater Sci Technol 5(4):377–381.
  • [24] An J, Lu Y, Xu DW, Liu YB, Sun DR, Yang B. 2001. Hot-roll bonding of Al-Pb bearing alloy strips and hot dip aluminized steel sheets. J Mater Eng Perform 10(2):131–135.
  • [25] Cao R, Ding Y, Yan Y, Zhang X, Chen J. 2019. Effect of heat treatment on interface behavior of martensite/austenite multilayered composites by accumulative hot roll bonding. Compos. Interfaces .
  • [26] Talebian M, Alizadeh M. 2014. Manufacturing Al/steel multilayered composite by accumulative roll bonding and the effects of subsequent annealing on the microstructural and mechanical characteristics. Mater Sci Eng A 590:186–193.
  • [27] Mendes A, Timokhina I, Molotnikov A, Hodgson PD, Lapovok R. 2017. Role of shear in interface formation of aluminium-steel multilayered composite sheets. Mater Sci Eng A 705:142–152.
  • [28] Yoshida F, Hino R, Okada T. 1993. Stretch bending and the subsequent straightening of sheet metal laminates. In: Adv. Eng. Plast. its Appl. Elsevier, pp 1097–1104.
  • [29] Yin FX, Li L, Tanaka Y, Kishimoto S, Nagai K. 2012. Hot rolling bonded multilayered composite steels and varied tensile deformation behaviour. Mater Sci Technol 28(7):783–787.
  • [30] Takuda H, Fujimoto H, Hatta N. 1998. Formabilities of steel/aluminium alloy laminated composite sheets. J Mater Sci 33(1):91–97.
  • [31] Abdulstaar MA, El-Danaf EA, Waluyo NS, Wagner L. 2013. Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties. Mater Sci Eng A 565:351–358.
  • [32] Nambu S, Michiuchi M, Inoue J, Koseki T. 2009. Effect of interfacial bonding strength on tensile ductility of multilayered steel composites. Compos Sci Technol 69(11–12):1936–1941.
  • [33] Bouche K, Barbier F, Coulet A. 1998. Intermetallic compound layer growth between solid iron and molten aluminium. Mater Sci Eng A 249(1–2):167–175.
  • [34] Dybkov VI. 1990. Interaction of 18Cr-10Ni stainless steel with liquid aluminium. J Mater Sci 25(8):3615–3633.
  • [35] Barmak K, Dybkov VI. 2003. Interaction of iron-chromium alloys containing 10 and 25 mass% chromium with liquid aluminium Part I Dissolution kinetics. J Mater Sci 38(15):3249–3255.
  • [36] Kobayashi S, Yakou T. 2002. Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mater Sci Eng A 338(1–2):44–53.
Year 2022, , 61 - 70, 24.03.2022
https://doi.org/10.17798/bitlisfen.992099

Abstract

Project Number

FDT-2020-2288

References

  • [1] Dudek A, Lisiecka B, Ulewicz R. 2017. The effect of alloying method on the structure and properties of sintered stainless steel. Arch. Metall. Mater. 62:.
  • [2] Presuel-Moreno F, Scully JR, Sharp SR. 2009. Literature review of commercially available alloys that have potential as low-cost corrosion resistant concrete reinforcement. Corros. 2009 .
  • [3] Li Z, Zhao J, Jia F, Liang X, Zhang Q, Yuan X, Jiao S, Jiang Z. 2020. Interfacial characteristics and mechanical properties of duplex stainless steel bimetal composite by heat treatment. Mater Sci Eng A 787:139513.
  • [4] Casalino G, Angelastro A, Perulli P, Casavola C, Moramarco V. 2018. Study on the fiber laser/TIG weldability of AISI 304 and AISI 410 dissimilar weld. J Manuf Process 35:216–225.
  • [5] Bina MH, Jamali M, Shamanian M, Sabet H. 2014. Investigation on the resistance spot-welded austenitic/ferritic stainless steel. Int J Adv Manuf Technol 75(9–12):1371–1379.
  • [6] Lakshminarayanan AK, Shanmugam K, Balasubramanian V. 2009. Effect of welding processes on tensile and impact properties, hardness and microstructure of AISI 409M ferritic stainless joints fabricated by duplex stainless steel filler metal. J iron steel Res Int 16(5):66–72.
  • [7] Berretta JR, de Rossi W, das Neves MDM, de Almeida IA, Junior NDV. 2007. Pulsed Nd: YAG laser welding of AISI 304 to AISI 420 stainless steels. Opt Lasers Eng 45(9):960–966.
  • [8] Sharma G, Kumar A, Sharma S, Naushad M, Dwivedi RP, ALOthman ZA, Mola GT. 2019. Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J King Saud Univ 31(2):257–269.
  • [9] Li Z, Zhao J, Jia F, Lu Y, Liang X, Yuan X, Jiao S, Zhou C, Jiang Z. 2020. Hot deformation behaviour and interfacial characteristics of bimetal composite at elevated temperatures. Intermetallics 125:106893.
  • [10] Jindal V, Srivastava VC, Das A, Ghosh RN. 2006. Reactive diffusion in the roll bonded iron–aluminum system. Mater Lett 60(13–14):1758–1761.
  • [11] Naoi D, Kajihara M. 2007. Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures. Mater Sci Eng A 459(1–2):375–382.
  • [12] Lesuer DR, Syn CK, Sherby OD, Wadsworth J, Lewandowski JJ, Hunt WH. 1996. Mechanical behaviour of laminated metal composites. Int Mater Rev 41(5):169–197.
  • [13] JEKLA MLS, NA O, MATERIALIH K, VRO IZ, VALJANJEM IM. 2017. Mechanical Properties of Laminated Steel-Based Composite Materials Fabricated by Hot Rolling. Mater Tehnol 51(4):557–561.
  • [14] Mali VI, Bataev AA, Maliutina IN, Kurguzov VD, Bataev IA, Esikov MA, Lozhkin VS. 2017. Microstructure and mechanical properties of Ti/Ta/Cu/Ni alloy laminate composite materials produced by explosive welding. Int J Adv Manuf Technol 93(9):4285–4294.
  • [15] Liu K, Li Y, Xia C, Wang J. 2017. Microstructural evolution and properties of TLP diffusion bonding super-Ni/NiCr laminated composite to Ti-6Al-4V alloy with Cu interlayer. Mater Des 135:184–196.
  • [16] Gao X, Wei D, Jiang Z. 2012. Analysis of temperature field in liquid-solid bimetal casting of laminated metal composite. Adv Sci Lett 15(1):48–52.
  • [17] Farid A, Guo S. 2007. On the processing, microstructure, mechanical and wear properties of cermet/stainless steel layer composites. Acta Mater 55(4):1467–1477.
  • [18] Cepeda-Jiménez CM, Hidalgo P, Pozuelo M, Ruano OA, Carreño F. 2010. Influence of constituent materials on the impact toughness and fracture mechanisms of hot-roll-bonded aluminum multilayer laminates. Metall Mater Trans A 41(1):61.
  • [19] Huang Q, Yang X, Ma L, Zhou C, Liu G, Li H. 2014. Interface-correlated characteristics of stainless steel/carbon steel plate fabricated by AAWIV and hot rolling. J Iron Steel Res Int 21(10):931–937.
  • [20] Yuan J, Pang Y, Li T. 2011. Multilayer clad plate of stainless steel/aluminum/aluminum alloy. J Wuhan Univ Technol Sci Ed 26(1):111–113.
  • [21] Lee KS, Yoon DH, Lee SE, Lee YS. 2011. The effect of thermomechanical treatment on the interface microstructure and local mechanical properties of roll bonded pure Ti/439 stainless steel multilayered materials. Procedia Eng 10:3459–3464.
  • [22] Danesh Manesh H, Karimi Taheri A. 2004. Study of mechanisms of cold roll welding of aluminium alloy to steel strip. Mater Sci Technol 20(8):1064–1068.
  • [23] Tabata T, Masaki S, Azekura K. 1989. Bond criterion in cold pressure welding of aluminium. Mater Sci Technol 5(4):377–381.
  • [24] An J, Lu Y, Xu DW, Liu YB, Sun DR, Yang B. 2001. Hot-roll bonding of Al-Pb bearing alloy strips and hot dip aluminized steel sheets. J Mater Eng Perform 10(2):131–135.
  • [25] Cao R, Ding Y, Yan Y, Zhang X, Chen J. 2019. Effect of heat treatment on interface behavior of martensite/austenite multilayered composites by accumulative hot roll bonding. Compos. Interfaces .
  • [26] Talebian M, Alizadeh M. 2014. Manufacturing Al/steel multilayered composite by accumulative roll bonding and the effects of subsequent annealing on the microstructural and mechanical characteristics. Mater Sci Eng A 590:186–193.
  • [27] Mendes A, Timokhina I, Molotnikov A, Hodgson PD, Lapovok R. 2017. Role of shear in interface formation of aluminium-steel multilayered composite sheets. Mater Sci Eng A 705:142–152.
  • [28] Yoshida F, Hino R, Okada T. 1993. Stretch bending and the subsequent straightening of sheet metal laminates. In: Adv. Eng. Plast. its Appl. Elsevier, pp 1097–1104.
  • [29] Yin FX, Li L, Tanaka Y, Kishimoto S, Nagai K. 2012. Hot rolling bonded multilayered composite steels and varied tensile deformation behaviour. Mater Sci Technol 28(7):783–787.
  • [30] Takuda H, Fujimoto H, Hatta N. 1998. Formabilities of steel/aluminium alloy laminated composite sheets. J Mater Sci 33(1):91–97.
  • [31] Abdulstaar MA, El-Danaf EA, Waluyo NS, Wagner L. 2013. Severe plastic deformation of commercial purity aluminum by rotary swaging: Microstructure evolution and mechanical properties. Mater Sci Eng A 565:351–358.
  • [32] Nambu S, Michiuchi M, Inoue J, Koseki T. 2009. Effect of interfacial bonding strength on tensile ductility of multilayered steel composites. Compos Sci Technol 69(11–12):1936–1941.
  • [33] Bouche K, Barbier F, Coulet A. 1998. Intermetallic compound layer growth between solid iron and molten aluminium. Mater Sci Eng A 249(1–2):167–175.
  • [34] Dybkov VI. 1990. Interaction of 18Cr-10Ni stainless steel with liquid aluminium. J Mater Sci 25(8):3615–3633.
  • [35] Barmak K, Dybkov VI. 2003. Interaction of iron-chromium alloys containing 10 and 25 mass% chromium with liquid aluminium Part I Dissolution kinetics. J Mater Sci 38(15):3249–3255.
  • [36] Kobayashi S, Yakou T. 2002. Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment. Mater Sci Eng A 338(1–2):44–53.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Hüseyin Demirtaş 0000-0002-2442-2158

Alper İncesu 0000-0003-4404-4331

Project Number FDT-2020-2288
Publication Date March 24, 2022
Submission Date September 7, 2021
Acceptance Date November 17, 2021
Published in Issue Year 2022

Cite

IEEE H. Demirtaş and A. İncesu, “Haddeleme ile Birleştirilen AISI 430/Al 1050 /AISI 304 Tabakalı Kompozitlerde Isıl işlemin Ara Yüzey ve Mekanik Özelliklere Etkisi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 1, pp. 61–70, 2022, doi: 10.17798/bitlisfen.992099.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS