Research Article
BibTex RIS Cite

Biyomedikal Uygulamalarda Kullanılan Ti-6Al-4V α/β Alaşımının Aşınma Davranışına Kriyojenik ve Yaşlandırma İşlemlerinin Birleşik Etkisi

Year 2022, , 71 - 78, 24.03.2022
https://doi.org/10.17798/bitlisfen.994657

Abstract

Ti-6Al-4V α/β titanyum alaşımı, mükemmel osseointegrasyon özelliği, yüksek korozyon direnci, düşük yoğunluğu ve kemik yapısı ile uyumlu düşük Elastisite modülü nedeniyle biyomedikal uygulamalarda yapay eklemlerin üretiminde kullanılmaktadır. Kullanım alanı göz önüne alındığında, Ti-6Al-4V alaşımının yüksek çekme özelliklerine ve yüksek aşınma direncine sahip olması beklenmektedir. Bu çalışmada, yüksek çekme özellikleri ve aşınma direnci elde etmek için alaşıma yaşlandırma işlemi ve kriyojenik işlem ardından yaşlandırma işlemi uygulanmıştır. Kriyojenik işlem, derin (-196°C) ve sığ (-140°C) kriyojenik işlem sıcaklıklarında gerçekleştirilmiştir. Ayrıca tek aşamalı yaşlandırma işlemi, dubleks yaşlandırma işlemi ve kriyojenik işlem ardından tek aşamalı ve dubleks yaşlandırma işlemi uygulanmıştır. Isıl işlem türlerinin alaşımın mekanik ve mikro yapısal özelliklerine etkisi çekme testi, sertlik testi, aşınma testi, XRD faz analizi ve mikro yapısal incelemeler ile belirlenmiştir. Dubleks yaşlandırma işlemi uygulaması ile β fazlarının miktarı azalmış, optimum çekme mukavemeti ve yüzde uzama elde edilmiş ve alaşımın aşınma direnci tek aşamalı yaşlandırma işlemine kıyasla artmıştır. İlave olarak, kriyojenik işlem sıcaklığının azalması, faz dönüşüm kinetiğini yavaşlatmış ve hem tek basamaklı hem de dupleks yaşlandırılmış numunelerde α fazlarının çökelmesinde bir azalmaya neden olmuştur. En yüksek aşınma direnci ise kriyojenik işlem ardından dubleks yaşlandırma işlemi uygulanan numunede mikro yapıda β fazlarının azalmasına bağlı olarak elde edilmiştir.

References

  • [1] Prasad K., Bazaka O., Chua M., Rochford M., Fedrick L., Spoor J., Symes R., Tieppo M., Collins C., Cao A., Markwell D., Ostrikov K., Bazaka K. 2017. Metallic Biomaterials: Current Challenges and Opportunities. Materials, 10 (8):1-33. https://doi.org/10.3390/MA10080884.
  • [2] dVeiga C., Davim J., Loureiro A. 2012. Properties and Applications of Titanium Alloys: A Brief Review. Reviews on Advanced Materials Science, 32: 33-48.
  • [3] Harun W.S.W., Kamariah M.S.I.N., Muhamad N., Ghani S.A.C., Ahmad F., Mohamed Z. 2018. A Review of Powder Additive Manufacturing Processes for Metallic Biomaterials. Powder Technology, 327:128–151. https://doi.org/10.1016/J.POWTEC.2017.12.058.
  • [4] Yumak N., Aslantas K. A 2020. Review on Heat Treatment Efficiency in Metastable b Titanium Alloys: The Role of Treatment Process and Parameters. Journal of Materials Research and Technology, 9:15360–6280. https://doi.org/10.1016/j.jmrt.2020.10.088.
  • [5] Ding R., Guo Z.X., Wilson A. 2002. Microstructural Evolution of a Ti–6Al–4V Alloy During Thermomechanical Processing. Materials Science and Engineering: A, 327:233–45. https://doi.org/10.1016/S0921-5093(01)01531-3.
  • [6] Yumak N., Aslantas K., Pekbey Y. 2017. Effect of Cryogenic and Aging Treatments on Low-Energy Impact Behaviour of Ti–6Al–4V Alloy. Transactions of Nonferrous Metals Society of China (English Edition), 27:514–526. https://doi.org/10.1016/S1003-6326(17)60058-X.
  • [7] Baldissera P., Delprete C. 2008. Deep Cryogenic Treatment: A Bibliographic Review. The Open Mechanical Engineering Journal, 2:1–11. https://doi.org/10.2174/1874155X00802010001.
  • [8] Singla A.K., Singh J., Sharma V.S., Gupta M.K., Song Q., Rozumek D., Krolczyk, G. M. 2020. Impact of Cryogenic Treatment on HCF and FCP Performance of β-Solution Treated Ti-6Al-4V ELI Biomaterial. Materials, 13 (3):1-14. https://doi.org/10.3390/MA13030500.
  • [9] Nagai K., Yuri T., Umezawa O., Ishikawa K. 1990. Fatigue and Fracture of Ti Alloys at Cryogenic Temperatures. 11th International Conference on Magnet Technology (MT-11), August 28-September, Tsukuba, 754–759. https://doi.org/10.1007/978-94-009-0769-0_130.
  • [10] Das D., Dutta A.K., Ray K.K. 2010. Sub-zero Treatments of AISI D2 Steel: Part II. Wear Behavior. Materials Science and Engineering: A, 527:2194–206. https://doi.org/10.1016/J.MSEA.2009.10.071.
  • [11] Senthilkumar D., Rajendran I., Pellizzari M., Siiriainen J. 2011. Influence of Shallow and Deep Cryogenic Treatment on The Residual State of Stress of 4140 Steel. Journal of Materials Processing Technology, 211:396–401. https://doi.org/10.1016/J.JMATPROTEC.2010.10.018.
  • [12] Gu K., Wang J., Zhou Y. 2014. Effect of Cryogenic Treatment on Wear Resistance of Ti-6Al-4V Alloy for Biomedical Applications. Journal of the Mechanical Behavior of Biomedical Materials, 30:131–139. https://doi.org/10.1016/j.jmbbm.2013.11.003.
  • [13] Yumak N., Aslantas K. 2021. Effect of Heat Treatment Procedure on Mechanical Properties of Ti-15V-3Al-3Sn-3Cr Metastable β Titanium Alloy. Journal of Materials Engineering and Performance, 30 (2):1–9. https://doi.org/10.1007/s11665-020-05445-x.
  • [14] Santos P.C.P., Correa E.O. 2021. Effect of Duplex Aging Heat Treatment on the Stress Corrosion Cracking Behavior of Ti-6Al-4V α+β Titanium Alloy in Methanol. Materials Research, 24:1-5. https://doi.org/10.1590/1980-5373-MR-2020-0456.
  • [15] Yumak N., Aslantaş K., Çetkin A. 2021. Cryogenic and Aging Treatment Effects on the Mechanical Properties of Ti-15V-3Al-3Cr-3Sn Titanium Alloy. Journal of Testing and Evaluation, 49(5):3221-3233. https://doi.org/10.1520/JTE20200078.
  • [16] Gu K., Zhang H., Zhao B., Wang J., Zhou Y., Li Z. 2013. Effect of Cryogenic Treatment and Aging Treatment on The Tensile Properties and Microstructure of Ti-6Al-4V Alloy. Materials Science and Engineering A, 584:170-176. https://doi.org/10.1016/j.msea.2013.07.021.
  • [17] Zeng L., Bieler T.R. 2005. Effects of Working, Heat Treatment, and Aging on Microstructural Evolution and Crystallographic Texture of α, α′, α″ and β Phases in Ti–6Al–4V Wire. Materials Science and Engineering: A, 392:403-414. https://doi.org/10.1016/J.MSEA.2004.09.072.

Combined Effect of Cryogenic and Aging treatments on Wear Behavior of Ti-6Al-4V α/β Alloy for Biomedical Applications

Year 2022, , 71 - 78, 24.03.2022
https://doi.org/10.17798/bitlisfen.994657

Abstract

Ti-6Al-4V α/β titanium alloy is used in biomedical applications to produce artificial joints due to its excellent osseointegration property, high corrosion resistance, low density, and low Elasticity modulus compatible with bone structure. Considering the usage area, Ti-6Al-4V alloy is expected to have high tensile properties and high wear resistance. In this study, aging treatment and a combination of aging and cryogenic treatment were applied to the alloy to obtain high tensile properties and wear resistance. Cryogenic treatment was conducted at deep (-196°C) and shallow (-140°C) cryogenic treatment temperatures. Also, aging treatment was conducted to the alloy with/without cryogenic treatment as a single-step or duplex. The effect of the heat treatment types on the alloy's mechanical and microstructural properties was determined by tensile test, hardness test, wear test, XRD phase analysis, and microstructural investigations. With the application of the duplex aging treatment amount of the β phases decreased, a good balance between tensile strength and the elongation was obtained, and the wear resistance of the alloy increased compared to the single-step aging. In addition, the decrease of the cryogenic treatment temperature slowed down the phase transformation kinetics and caused a decrease in precipitation of α phases at both single-step and duplex aged samples. Superior wear resistance was obtained with the reduction of β phases in the microstructure of the samples that were duplex aged after cryogenic treatment.

References

  • [1] Prasad K., Bazaka O., Chua M., Rochford M., Fedrick L., Spoor J., Symes R., Tieppo M., Collins C., Cao A., Markwell D., Ostrikov K., Bazaka K. 2017. Metallic Biomaterials: Current Challenges and Opportunities. Materials, 10 (8):1-33. https://doi.org/10.3390/MA10080884.
  • [2] dVeiga C., Davim J., Loureiro A. 2012. Properties and Applications of Titanium Alloys: A Brief Review. Reviews on Advanced Materials Science, 32: 33-48.
  • [3] Harun W.S.W., Kamariah M.S.I.N., Muhamad N., Ghani S.A.C., Ahmad F., Mohamed Z. 2018. A Review of Powder Additive Manufacturing Processes for Metallic Biomaterials. Powder Technology, 327:128–151. https://doi.org/10.1016/J.POWTEC.2017.12.058.
  • [4] Yumak N., Aslantas K. A 2020. Review on Heat Treatment Efficiency in Metastable b Titanium Alloys: The Role of Treatment Process and Parameters. Journal of Materials Research and Technology, 9:15360–6280. https://doi.org/10.1016/j.jmrt.2020.10.088.
  • [5] Ding R., Guo Z.X., Wilson A. 2002. Microstructural Evolution of a Ti–6Al–4V Alloy During Thermomechanical Processing. Materials Science and Engineering: A, 327:233–45. https://doi.org/10.1016/S0921-5093(01)01531-3.
  • [6] Yumak N., Aslantas K., Pekbey Y. 2017. Effect of Cryogenic and Aging Treatments on Low-Energy Impact Behaviour of Ti–6Al–4V Alloy. Transactions of Nonferrous Metals Society of China (English Edition), 27:514–526. https://doi.org/10.1016/S1003-6326(17)60058-X.
  • [7] Baldissera P., Delprete C. 2008. Deep Cryogenic Treatment: A Bibliographic Review. The Open Mechanical Engineering Journal, 2:1–11. https://doi.org/10.2174/1874155X00802010001.
  • [8] Singla A.K., Singh J., Sharma V.S., Gupta M.K., Song Q., Rozumek D., Krolczyk, G. M. 2020. Impact of Cryogenic Treatment on HCF and FCP Performance of β-Solution Treated Ti-6Al-4V ELI Biomaterial. Materials, 13 (3):1-14. https://doi.org/10.3390/MA13030500.
  • [9] Nagai K., Yuri T., Umezawa O., Ishikawa K. 1990. Fatigue and Fracture of Ti Alloys at Cryogenic Temperatures. 11th International Conference on Magnet Technology (MT-11), August 28-September, Tsukuba, 754–759. https://doi.org/10.1007/978-94-009-0769-0_130.
  • [10] Das D., Dutta A.K., Ray K.K. 2010. Sub-zero Treatments of AISI D2 Steel: Part II. Wear Behavior. Materials Science and Engineering: A, 527:2194–206. https://doi.org/10.1016/J.MSEA.2009.10.071.
  • [11] Senthilkumar D., Rajendran I., Pellizzari M., Siiriainen J. 2011. Influence of Shallow and Deep Cryogenic Treatment on The Residual State of Stress of 4140 Steel. Journal of Materials Processing Technology, 211:396–401. https://doi.org/10.1016/J.JMATPROTEC.2010.10.018.
  • [12] Gu K., Wang J., Zhou Y. 2014. Effect of Cryogenic Treatment on Wear Resistance of Ti-6Al-4V Alloy for Biomedical Applications. Journal of the Mechanical Behavior of Biomedical Materials, 30:131–139. https://doi.org/10.1016/j.jmbbm.2013.11.003.
  • [13] Yumak N., Aslantas K. 2021. Effect of Heat Treatment Procedure on Mechanical Properties of Ti-15V-3Al-3Sn-3Cr Metastable β Titanium Alloy. Journal of Materials Engineering and Performance, 30 (2):1–9. https://doi.org/10.1007/s11665-020-05445-x.
  • [14] Santos P.C.P., Correa E.O. 2021. Effect of Duplex Aging Heat Treatment on the Stress Corrosion Cracking Behavior of Ti-6Al-4V α+β Titanium Alloy in Methanol. Materials Research, 24:1-5. https://doi.org/10.1590/1980-5373-MR-2020-0456.
  • [15] Yumak N., Aslantaş K., Çetkin A. 2021. Cryogenic and Aging Treatment Effects on the Mechanical Properties of Ti-15V-3Al-3Cr-3Sn Titanium Alloy. Journal of Testing and Evaluation, 49(5):3221-3233. https://doi.org/10.1520/JTE20200078.
  • [16] Gu K., Zhang H., Zhao B., Wang J., Zhou Y., Li Z. 2013. Effect of Cryogenic Treatment and Aging Treatment on The Tensile Properties and Microstructure of Ti-6Al-4V Alloy. Materials Science and Engineering A, 584:170-176. https://doi.org/10.1016/j.msea.2013.07.021.
  • [17] Zeng L., Bieler T.R. 2005. Effects of Working, Heat Treatment, and Aging on Microstructural Evolution and Crystallographic Texture of α, α′, α″ and β Phases in Ti–6Al–4V Wire. Materials Science and Engineering: A, 392:403-414. https://doi.org/10.1016/J.MSEA.2004.09.072.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Nihal Yumak 0000-0003-4492-7142

Publication Date March 24, 2022
Submission Date September 13, 2021
Acceptance Date November 30, 2021
Published in Issue Year 2022

Cite

IEEE N. Yumak, “Combined Effect of Cryogenic and Aging treatments on Wear Behavior of Ti-6Al-4V α/β Alloy for Biomedical Applications”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 1, pp. 71–78, 2022, doi: 10.17798/bitlisfen.994657.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr