Research Article
BibTex RIS Cite

Denetimsiz Anomali Tespiti Yaklaşımı ile Düşme Algılama

Year 2022, , 88 - 98, 24.03.2022
https://doi.org/10.17798/bitlisfen.997760

Abstract

Yaşlı nüfusunun hızla artması ve yaşlılığa bağlı olarak karşılaşılan fiziksel, duyusal ve bilişsel gerilemeler, düşmeyi her geçen gün büyüyen bir problem olarak karşımıza çıkarmakta ve düşme tespiti çalışmalarının hız kazanmasına sebep olmaktadır. Günlük aktivitelerin düşmeden ayırt edilmesinden ibaret olan düşme tespiti probleminde, denetimli öğrenme yaklaşımları kullanılmasına rağmen, düşmenin nadir rastlanan ve çok farklı biçimlerde karşılaşılabilen bir olay olması genel bir model elde edilmesine izin vermemektedir. Bu çalışmada denetimsiz anomali tespiti ile düşmenin belirlenmesi önerilmektedir. Denetimsiz öğrenme modelinin elde edilmesinde ve model vasıtasıyla düşmenin tespitinde 35 tip düşme ve 44 tip günlük aktiviteye sahip kapsamlı bir veri setinden faydalanılmıştır. Denetimsiz öğrenme yöntemi olan Gauss karışım modelinin eğitiminde, günlük aktivitelerden toplanan 3-eksen ivmeölçer sinyallerinden elde edilen öznitelikler kullanılmıştır. Test aşamasında model, düşme ve günlük aktivite verileri ile karşılaşmış, modele göre olasılığı çok düşük olan veriler anomali, dolayısıyla düşme olarak kabul edilmiştir. Testlerde düşmeler %90,5 civarında doğru olarak tespit edilmiştir. Sonuçlar düşmenin anomali tespiti yaklaşımları ile belirlenebileceğini ve makine öğrenmesi modelinin elde edilmesi için yalnız günlük aktivite verilerinin yeterli olduğu yaklaşımını doğrulamaktadır.

References

  • World Health Organization, “Falls.” [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/falls. [Accessed: 12-Jun-2021].
  • R. Rajagopalan, I. Litvan, and T.-P. Jung, “Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions,” Sensors, vol. 17, no. 11, p. 2509, Nov. 2017.
  • United Nations, “World Population Ageing 2019.” [Online]. Available: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf. [Accessed: 13-Jun-2021].
  • Türkiye İstatistik Kurumu, “İstatistiklerle Yaşlılar, 2020.” [Online]. Available: https://data.tuik.gov.tr/Bulten/Index?p=Istatistiklerle-Yaslilar-2020-37227. [Accessed: 13-Jun-2021].
  • K.-C. Liu, C.-Y. Hsieh, H.-Y. Huang, S. J.-P. Hsu, and C.-T. Chan, “An Analysis of Segmentation Approaches and Window Sizes in Wearable-Based Critical Fall Detection Systems With Machine Learning Models,” IEEE Sens. J., vol. 20, no. 6, pp. 3303–3313, Mar. 2020.
  • O. Kerdjidj, N. Ramzan, K. Ghanem, A. Amira, and F. Chouireb, “Fall detection and human activity classification using wearable sensors and compressed sensing,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 1, pp. 349–361, 2020.
  • Y.-H. Nho, J. G. Lim, and D.-S. Kwon, “Cluster-Analysis-Based User-Adaptive Fall Detection Using Fusion of Heart Rate Sensor and Accelerometer in a Wearable Device,” IEEE Access, vol. 8, pp. 40389–40401, 2020.
  • M. Saleh and R. L. B. Jeannes, “Elderly Fall Detection Using Wearable Sensors: A Low Cost Highly Accurate Algorithm,” IEEE Sens. J., vol. 19, no. 8, pp. 3156–3164, 2019.
  • C. Wang et al., “Low-Power Fall Detector Using Triaxial Accelerometry and Barometric Pressure Sensing,” IEEE Trans. Ind. Informatics, vol. 12, no. 6, pp. 2302–2311, 2016.
  • X. Wang, J. Ellul, and G. Azzopardi, “Elderly Fall Detection Systems: A Literature Survey,” Front. Robot. AI, vol. 7, Jun. 2020.
  • M. Saleh, M. Abbas, and R. B. Le Jeannes, “FallAllD: An Open Dataset of Human Falls and Activities of Daily Living for Classical and Deep Learning Applications,” IEEE Sens. J., vol. 21, no. 2, pp. 1849–1858, Jan. 2021.
  • W. Xiong et al., “Accurate Fall Detection Algorithm Based on SBPSO-SVM Classifier,” ACM Int. Conf. Proceeding Ser., pp. 83–86, 2018.
  • F. Hussain, F. Hussain, M. Ehatisham-Ul-Haq, and M. A. Azam, “Activity-Aware Fall Detection and Recognition Based on Wearable Sensors,” IEEE Sens. J., vol. 19, no. 12, pp. 4528–4536, 2019.
  • E. Casilari-Pérez and F. García-Lagos, “A comprehensive study on the use of artificial neural networks in wearable fall detection systems,” Expert Syst. Appl., vol. 138, 2019.
  • S. S. Khan and B. Taati, “Detecting unseen falls from wearable devices using channel-wise ensemble of autoencoders,” Expert Syst. Appl., vol. 87, pp. 280–290, 2017.
  • S. Zhao, W. Li, and J. Cao, “A user-adaptive algorithm for activity recognition based on K-means clustering, local outlier factor, and multivariate gaussian distribution,” Sensors (Switzerland), vol. 18, no. 6, 2018.
  • A. Sucerquia, J. D. López, and J. F. Vargas-Bonilla, “SisFall: A fall and movement dataset,” Sensors (Switzerland), vol. 17, no. 1, 2017.
  • G. Vavoulas, M. Pediaditis, E. G. Spanakis, and M. Tsiknakis, “The MobiFall dataset: An initial evaluation of fall detection algorithms using smartphones,” 13th IEEE Int. Conf. Bioinforma. Bioeng. IEEE BIBE 2013, 2013.
  • L. Li, R. J. Hansman, R. Palacios, and R. Welsch, “Anomaly detection via a Gaussian Mixture Model for flight operation and safety monitoring,” Transp. Res. Part C Emerg. Technol., vol. 64, pp. 45–57, Mar. 2016.
Year 2022, , 88 - 98, 24.03.2022
https://doi.org/10.17798/bitlisfen.997760

Abstract

References

  • World Health Organization, “Falls.” [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/falls. [Accessed: 12-Jun-2021].
  • R. Rajagopalan, I. Litvan, and T.-P. Jung, “Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions,” Sensors, vol. 17, no. 11, p. 2509, Nov. 2017.
  • United Nations, “World Population Ageing 2019.” [Online]. Available: https://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeing2019-Highlights.pdf. [Accessed: 13-Jun-2021].
  • Türkiye İstatistik Kurumu, “İstatistiklerle Yaşlılar, 2020.” [Online]. Available: https://data.tuik.gov.tr/Bulten/Index?p=Istatistiklerle-Yaslilar-2020-37227. [Accessed: 13-Jun-2021].
  • K.-C. Liu, C.-Y. Hsieh, H.-Y. Huang, S. J.-P. Hsu, and C.-T. Chan, “An Analysis of Segmentation Approaches and Window Sizes in Wearable-Based Critical Fall Detection Systems With Machine Learning Models,” IEEE Sens. J., vol. 20, no. 6, pp. 3303–3313, Mar. 2020.
  • O. Kerdjidj, N. Ramzan, K. Ghanem, A. Amira, and F. Chouireb, “Fall detection and human activity classification using wearable sensors and compressed sensing,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 1, pp. 349–361, 2020.
  • Y.-H. Nho, J. G. Lim, and D.-S. Kwon, “Cluster-Analysis-Based User-Adaptive Fall Detection Using Fusion of Heart Rate Sensor and Accelerometer in a Wearable Device,” IEEE Access, vol. 8, pp. 40389–40401, 2020.
  • M. Saleh and R. L. B. Jeannes, “Elderly Fall Detection Using Wearable Sensors: A Low Cost Highly Accurate Algorithm,” IEEE Sens. J., vol. 19, no. 8, pp. 3156–3164, 2019.
  • C. Wang et al., “Low-Power Fall Detector Using Triaxial Accelerometry and Barometric Pressure Sensing,” IEEE Trans. Ind. Informatics, vol. 12, no. 6, pp. 2302–2311, 2016.
  • X. Wang, J. Ellul, and G. Azzopardi, “Elderly Fall Detection Systems: A Literature Survey,” Front. Robot. AI, vol. 7, Jun. 2020.
  • M. Saleh, M. Abbas, and R. B. Le Jeannes, “FallAllD: An Open Dataset of Human Falls and Activities of Daily Living for Classical and Deep Learning Applications,” IEEE Sens. J., vol. 21, no. 2, pp. 1849–1858, Jan. 2021.
  • W. Xiong et al., “Accurate Fall Detection Algorithm Based on SBPSO-SVM Classifier,” ACM Int. Conf. Proceeding Ser., pp. 83–86, 2018.
  • F. Hussain, F. Hussain, M. Ehatisham-Ul-Haq, and M. A. Azam, “Activity-Aware Fall Detection and Recognition Based on Wearable Sensors,” IEEE Sens. J., vol. 19, no. 12, pp. 4528–4536, 2019.
  • E. Casilari-Pérez and F. García-Lagos, “A comprehensive study on the use of artificial neural networks in wearable fall detection systems,” Expert Syst. Appl., vol. 138, 2019.
  • S. S. Khan and B. Taati, “Detecting unseen falls from wearable devices using channel-wise ensemble of autoencoders,” Expert Syst. Appl., vol. 87, pp. 280–290, 2017.
  • S. Zhao, W. Li, and J. Cao, “A user-adaptive algorithm for activity recognition based on K-means clustering, local outlier factor, and multivariate gaussian distribution,” Sensors (Switzerland), vol. 18, no. 6, 2018.
  • A. Sucerquia, J. D. López, and J. F. Vargas-Bonilla, “SisFall: A fall and movement dataset,” Sensors (Switzerland), vol. 17, no. 1, 2017.
  • G. Vavoulas, M. Pediaditis, E. G. Spanakis, and M. Tsiknakis, “The MobiFall dataset: An initial evaluation of fall detection algorithms using smartphones,” 13th IEEE Int. Conf. Bioinforma. Bioeng. IEEE BIBE 2013, 2013.
  • L. Li, R. J. Hansman, R. Palacios, and R. Welsch, “Anomaly detection via a Gaussian Mixture Model for flight operation and safety monitoring,” Transp. Res. Part C Emerg. Technol., vol. 64, pp. 45–57, Mar. 2016.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Abdullah Talha Sözer 0000-0002-7855-6119

Publication Date March 24, 2022
Submission Date September 20, 2021
Acceptance Date February 22, 2022
Published in Issue Year 2022

Cite

IEEE A. T. Sözer, “Denetimsiz Anomali Tespiti Yaklaşımı ile Düşme Algılama”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 1, pp. 88–98, 2022, doi: 10.17798/bitlisfen.997760.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS