BibTex RIS Cite

The Behavior of the Classical Diffusion Tensor for Mid-Latitude Ionospheric Plasma

Year 2016, Volume: 5 Issue: 2, 0 - 0, 27.12.2016

Abstract

In this study, the relationship between the classical diffusion tensor (DDD for steady-state case) and the equatorial anomaly is investigated by taking the geometry of Earth’s magnetic field as B=B0z for both solstices of these two different latitudes ionospheric plasma. Examination is made for the altitudes (280,300,340,390 and 410 km) where the observations are predominantly referenced to the equatorial anomaly.  It is seen that calculated value at 12.00 LT is greater than 24.00 LT in both solstice seasons. This means that no anomaly is observed in the classical diffusion coefficient for the electron density at night. It is seen that all values are higher at 12:00 LT than the values at 24:00 LT for both solstices. This means that the classical diffusion coefficient relates with the night anomaly which is observed with the electron density.

                Seasonal (winter) anomaly in the equatorial region (-100S, -150N) corresponds to 390 and 410 Km for D0, 280, 300 and 340 Km for D1 and similar condition to the seasonal anomaly for all altitudes for D2 (the measured values at 1221 are higher than the measured values at 621) at 12:00 LT. D0 and D2 values show seasonal anomaly for all altitudes while D1 does not show any values for any altitudes at 24:00 LT.

and dynamo effect.

References

  • Abbas, Q. A., F. Y. Hadi, and S.S. AL-Awadi (2011). Modified Bohm Diffusion equation in Q-Machine., Baghdad Science Journal., 8, 339-344.
  • Aydoğdu, M., A.Yeşil and E. Güzel (2004). The group refractive indicies of HF waves in the ionosphere and departure from magnitude without collisions, Jounal of Atmospheric and Solar- Terrestial Physics, 66, 343-348.
  • Backers, W.G. and D. F. Martyn (1953). Philisophical transactions of the royal society of London. Series A, Mathematical and Physical sciences ., 246, 281-294
  • Banks, P. and G. Kockarts (1973). Aeronomy, part B. Academic, San Diego, California
  • Bittencourt, J. A., 1995, Fundamentals of Plasma Physics, SP, Brazil
  • Maurice J-P. ST. and R.W. Schunk (1977). Diffusion and heat flow equations for the mid- latitude topside ionosphere. Planet. Space Sci., 25, 907-920.
  • Rishbeth, H. (1965). A review of Ionospheric F Region Theory, Procedding of the IEEE., 55, 16-35.
  • Rishbeth, H. (1975). On the theory of diffusion in the ionosphere. Geophys. J.R. astr. Soc., 41, 311-317.
  • Rishbeth, H. (1997). The ionospheric E-Layer and F- Layer dynamos- a tutorial review., Jounal of Atmospheric and Solar- Terrestial Physics., 59, 1873-1880.
  • Rishbeth, H. and O.K. Garriott (1969). Introduction to ionospheric physics. Academic Press, Amsterdam.
  • Whitten, R.C. and I.G. Poppoff (1971). Fundamentals of aeronomy. New York, NY (USA): John Wiley & Sons, 446 p. 1.
  • Sagir,S., Yesil, A., Sanac, G. and Unal., I.,(2014)., The Charecterization of diffusion tensor for mid- latitude ionospheric Plasma, Annals of Geophysics, 57,2,A0216; doi:10.4401/ag.6469
  • Zhinlinski, A.P. and L. D. Tsendin (1980). Collisional diffusion of a partly-ionized plasma in magnetic field, Soviet Phys. Uspekhi, 131, 343-385.
  • Yesil A.,Sagir, S., Ozcan, O., 2009. Comparison of maximum electron density predicted by
  • IRI-2001 with that measured over Chilton station. E-Journal of New World Sci. Acad.
  • (3), 92-99.)
Year 2016, Volume: 5 Issue: 2, 0 - 0, 27.12.2016

Abstract

References

  • Abbas, Q. A., F. Y. Hadi, and S.S. AL-Awadi (2011). Modified Bohm Diffusion equation in Q-Machine., Baghdad Science Journal., 8, 339-344.
  • Aydoğdu, M., A.Yeşil and E. Güzel (2004). The group refractive indicies of HF waves in the ionosphere and departure from magnitude without collisions, Jounal of Atmospheric and Solar- Terrestial Physics, 66, 343-348.
  • Backers, W.G. and D. F. Martyn (1953). Philisophical transactions of the royal society of London. Series A, Mathematical and Physical sciences ., 246, 281-294
  • Banks, P. and G. Kockarts (1973). Aeronomy, part B. Academic, San Diego, California
  • Bittencourt, J. A., 1995, Fundamentals of Plasma Physics, SP, Brazil
  • Maurice J-P. ST. and R.W. Schunk (1977). Diffusion and heat flow equations for the mid- latitude topside ionosphere. Planet. Space Sci., 25, 907-920.
  • Rishbeth, H. (1965). A review of Ionospheric F Region Theory, Procedding of the IEEE., 55, 16-35.
  • Rishbeth, H. (1975). On the theory of diffusion in the ionosphere. Geophys. J.R. astr. Soc., 41, 311-317.
  • Rishbeth, H. (1997). The ionospheric E-Layer and F- Layer dynamos- a tutorial review., Jounal of Atmospheric and Solar- Terrestial Physics., 59, 1873-1880.
  • Rishbeth, H. and O.K. Garriott (1969). Introduction to ionospheric physics. Academic Press, Amsterdam.
  • Whitten, R.C. and I.G. Poppoff (1971). Fundamentals of aeronomy. New York, NY (USA): John Wiley & Sons, 446 p. 1.
  • Sagir,S., Yesil, A., Sanac, G. and Unal., I.,(2014)., The Charecterization of diffusion tensor for mid- latitude ionospheric Plasma, Annals of Geophysics, 57,2,A0216; doi:10.4401/ag.6469
  • Zhinlinski, A.P. and L. D. Tsendin (1980). Collisional diffusion of a partly-ionized plasma in magnetic field, Soviet Phys. Uspekhi, 131, 343-385.
  • Yesil A.,Sagir, S., Ozcan, O., 2009. Comparison of maximum electron density predicted by
  • IRI-2001 with that measured over Chilton station. E-Journal of New World Sci. Acad.
  • (3), 92-99.)
There are 16 citations in total.

Details

Journal Section Articles
Authors

Ali Yeşil

Selçuk Sağır

Kadri Kurt This is me

Publication Date December 27, 2016
Submission Date June 25, 2016
Published in Issue Year 2016 Volume: 5 Issue: 2

Cite

IEEE A. Yeşil, S. Sağır, and K. Kurt, “The Behavior of the Classical Diffusion Tensor for Mid-Latitude Ionospheric Plasma”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 5, no. 2, 2016, doi: 10.17798/bitlisfen.282244.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS