Research Article
BibTex RIS Cite

Myriophyllum spicatum’un Süperoksit Dismutaz Enzim Aktivitesi, Lipid Peroksidasyonu ve Hidrojen Peroksit Üzerine Nano ve Mikro Bor Partiküllerinin Etkisi

Year 2017, Volume: 6 Issue: 2, 62 - 70, 25.12.2017
https://doi.org/10.17798/bitlisfen.285792

Abstract

Özet



Bitkiler,
ROS antioksidan enzim savunması ile karşılık verir. Bu enzimlerden birisi SOD
olup
süperoksit radikalini
yok etmeden sorumludur.
Lipid peroksidasyonu, ROS’nin
membranın lipid tabakasının peroksidasyonu sonucu olarak hücre membran
sistemlerinde metabolik değişikliklere yol açan
oksidatif
hasarlardır.
Bununda
yıkım ürünü MDA olup oksidatif hasarın en yaygın ölçülen göstergesidir. Bu
çalışmada, Myriophyllum Spicatum 72
saat
50, 100 ve
200 ml-1 konsantrasyonlarında nano ve mikro B partiküllerine maruz
bırakılmıştır.
Bunun sonucunda nano ve mikro B partiküllerinde
MDA, SOD, H2O2 değerleri açısından tüm
konsantrasyonlarda
önemli farklılıklar tespit edilmiştir (P<0,01). Myriophyllum spicatum membranlarının nano ve mikro B partikülü stres
uygulamasında zarar görmemiştir sadece, nano B’un 50 mg-1
konsantrasyonunda düşük seviyede membran hasarı gözlenmiştir.

References

  • 1. Handy R.D., Owen R., Valsami-Jones E. 2008. The Ecotoxicology of Nanoparticles and Nanomaterials: Current Status, Knowledge Gaps, Challenges, and Future Needs, Ecotoxicology, 17, 315-325.
  • 2. Donaldson K., Stone V., Tran C.L., Kreyling W., Borm P.J.A. 2004. Nanotoxicology, Occup Environ Med 2004;61:727-728 doi:10.1136/oem.2004.013243.
  • 3. Juhel G., Batisse E., Hugues Q., Daly D., Van Pelt N.A.M.F., O’Halloran J., Jansen A.K.M., 2011. Alumina nanoparticles enhance growth of lemna minor, Aquatic toxicology, 105: 328-336.
  • 4. Bekish Y.N., Poznyak S.K., Tsybulskaya L.S., Gaevskaya T.V. 2010. Electrodeposited Ni–B alloy coatings: structure, corrosion resistance and mechanical properties, Electrochim Acta, 55:2223–2231.
  • 5. Van Devener B., Perez J. P. L., Jankovich, J., & Anderson, S. L. (2009). Oxide-free, catalyst-coated, fuel-soluble, air-stable boron nanopowder as combined combustion catalyst and high energy density fuel. Energy and Fuels, 23(12), 6111-6120.
  • 6. Mortensen M.W., Sorensen P.G., Bjorkdahl O., Jensen M.R., Gundersen H.J.G., Bjornholm T. 2006. Preparation and characterization of boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy, Appl Radiat Isotopes, 64:315–324.
  • 7. Zhang X.W., Zou Y.J., Yan, H., Wang B., Chen G.H., Wong S.P. 2000. Electrical properties and annealing effects on the stress of RF-sputtered c-BN films, Mater Lett, 45:111–115.
  • 8. Nowack B., Bucheli T.D. 2007. Occurence, behavior and effects of nanoparticles in the environment, Pollution, 150-5-22.
  • 9. Özkan Y., Altınok İ., İlhan H., Sökmen M. 2015a. Determination of TiO2 and AgTiO2 nanoparticles in Artemia salina: Toxicity, morphological changes, uptake and deputation, Bull. Environ. Contam. Toxicology, DOI:10.1007/s00128-015-1634-1.
  • 10. Özkan Y., İrende İ., Akdeniz G., Kabakçı D., Sökmen M. 2015b. Evaluation of the comparative acute toxic effects of TiO2 and Ag-TiO2 and ZnO-TiO2 composite nanoparticles on Honey bee (Apis mellifera), J. Int. Evironmental Application & Science, vol. 10(1):26-36.
  • 11. Carpita N.C., Gibeaut D.M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular-structure with the physical properties of walls during growth, Plant Journal, 3:1-30.
  • 12. Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A., et al. 2008a. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi, Ecotoxicology, 17:372–86.
  • 13. Navarro E., Piccapietra F., Wagner B., Marconi F., Kaegi R., Odzak N., et al. 2008b. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii, Environ Sci Technology, 42: 8959–64.
  • 14. Lin S., Reppert J., Hu Q., Hunson J.S., Reid M.L., Ratnikova T., et al. 2009. Uptake, translocation and transmission of carbon nanomaterials in rice plants, Small, 1128–32.
  • 15. Liu Q., Chen B., Wang Q., Shi X., Xiao Z., Lin J., et al. 2009. Carbon nanotubes as molecular transporters for walled plant cells, Nano Letter, 9:1007–10.
  • 16. Vallyathan V., Shi X. 1997. The role of oxygen free radicals in occupational and environmental lung diseases, Environmental Health Perspectives, vol. 105, supplement 1, pp. 165–177.
  • 17. Bonner J.C. 2007. Lung fibrotic responses to particle exposure, Toxicologic Pathology, vol. 35, no. 1, pp. 148–153.
  • 18. Manke A., Wang L., Rojanasakul Y. 2013. Mechanisms of Nanoparticle-Induced Oxidative stres and toxicity, Biomed research international, volume, article ID 942916, 15 pages http://dx.doi.org/10.1155/2013/942916.
  • 19. Gill S.S., Tuteja N.2010 Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Dec;48(12):909-30.
  • 20. Knaapen A. M.,. Borm P.J.A., Albrecht C., Schins R.P.F. 2004. Inhaled particles and lung cancer, part A: mechanisms, International Journal of Cancer, vol. 109, no. 6, pp. 799–809.
  • 21. Risom L., Møller P., Loft S. 2005. Oxidative stress-induced DNA damage by particulate air pollution, Mutation Research, vol. 592, no. 1-2, pp. 119–137.
  • 22. Oberdörster G., Oberdörster E., Oberdörster J. 2005. Nanotoxicolgy. An emerging discipline evolving from studies of ultrafine particles, Health perspective, 113, 823-839.
  • 23. Daughton C.G. 2004. Non-Regulated Water Contaminants: Emerging Research, Environmental Impact Assessment Review, 24, 711-732.
  • 24. Wolverton B.C., McDonald R.C. 1975. Waterhyacinths and alligator weeds for removal of silver, cobalt, and strontium from polluted waters, NASA Tech. Memo. No. TM-X-72727.
  • 25. Wilde W.E., 1993. Benemann, J.R. Bioremoval of heavy metals by the use of microalgae, Biotechnology Advances, volume 11, Issue 4, 1993, Pages 781-812.
  • 26. Maeda S., Skaguchi T. 1990. Accumulation and detoxification of toxic metal elements by algae in: I. Akatsuka (Ed.), Introduction to Applied Phycology, Academic Publishing, The Hague (1990), pp. 109–136.
  • 27. Dağlıoğlu Y., Altınok İ., İlhan H., Sokmen M. 2016. Determination of the acute toxic effect of ZnO-TiO2 nanoparticles in brine shrimp (Artemia salina), Acta Biologica Turcica, 29(1)6-13.
  • 28. Grace J,B. Wetzel R.G. 1978. The production biology of Eurasian Watermilfoil (Myriophyllum spicatum L.): A review, J. Aquat. Plant Manage, 16:1-11.
  • 29. Smith C.S., Barko J.W. 1990. Ecology of Eurasian Watermilfoil, J. Aquat. Plant Manage, 28: 55-64.
  • 30. Altınayar G. 1988. Su Yabancı Otları. T.C. Bayındırlık ve İskan Bak. Dev. Su İşleri Genel Müd. İşletme ve Bakım Dairesi Başkanlığı, Ankara.
  • 31. Aiken S.G.,Newroth P.R, Wile I. 1979. Thebiology of Canadianweeds. 34. Myriophyllum spicatum L. CanadianJournal of PlantScience, 59. 201–215.
  • 32. Adams M. S., Titus, J., McCracken M. 1974. Depth distribution of photosynthetic activity in a Myriophyllum, spicatum community in Lake Wingra, Limnology and Oceanography, 19.3 (1974): 377-389.
  • 33. Barko J.W., Smart M. 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes, Ecology 67:1328-1340.
  • 34. Gross M.E., Meyer H., Schıllıng G. 1996. Release and ecologıcal ımpact of algıcıdal hydrolysable polyphenols ın Myriophyllum spicatum, First publ.in : phytochemistry, 41 pp. 133-138.
  • 35. Planas D., Sarhan F., Dube L., Godmaire H., Cadieux C. 1981. Verh. Int. Verein. Limnol. 21, 1492.
  • 36. Hothem S.D., Marley K.A. Larson R.A. 2003. Photochemistry in Hoagland’s nutrient solution, Journal of Plant Nutrition, 26,4, 845–854.
  • 37. Defontaine A., Lecocq M. F., Hallet J. 1991. A rapid miniprep method for the preparation of yeast mitochondrial DNA, Nucleic Acids Rsearch, November 1991, vol. 19, no. 1, p. 185.
  • 38. Heath R.L., Packer L. 1968. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys, 125, 189-198.
  • 39. Mukherjee S.P., Choudhuri M.A. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings, Physiol Plant, 58:166–170.
  • 40. Teranishi Y., Tanaka A., Osumi M., Fukui S. 1974. Catalas activity of hydrocarbon utilizing candida yeast, Agr. Biol. Chemistry, 38, 1213-1216.
  • 41. Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Analytical Biochemistry, vol. 44, no. 1, p. 276-287.
Year 2017, Volume: 6 Issue: 2, 62 - 70, 25.12.2017
https://doi.org/10.17798/bitlisfen.285792

Abstract

References

  • 1. Handy R.D., Owen R., Valsami-Jones E. 2008. The Ecotoxicology of Nanoparticles and Nanomaterials: Current Status, Knowledge Gaps, Challenges, and Future Needs, Ecotoxicology, 17, 315-325.
  • 2. Donaldson K., Stone V., Tran C.L., Kreyling W., Borm P.J.A. 2004. Nanotoxicology, Occup Environ Med 2004;61:727-728 doi:10.1136/oem.2004.013243.
  • 3. Juhel G., Batisse E., Hugues Q., Daly D., Van Pelt N.A.M.F., O’Halloran J., Jansen A.K.M., 2011. Alumina nanoparticles enhance growth of lemna minor, Aquatic toxicology, 105: 328-336.
  • 4. Bekish Y.N., Poznyak S.K., Tsybulskaya L.S., Gaevskaya T.V. 2010. Electrodeposited Ni–B alloy coatings: structure, corrosion resistance and mechanical properties, Electrochim Acta, 55:2223–2231.
  • 5. Van Devener B., Perez J. P. L., Jankovich, J., & Anderson, S. L. (2009). Oxide-free, catalyst-coated, fuel-soluble, air-stable boron nanopowder as combined combustion catalyst and high energy density fuel. Energy and Fuels, 23(12), 6111-6120.
  • 6. Mortensen M.W., Sorensen P.G., Bjorkdahl O., Jensen M.R., Gundersen H.J.G., Bjornholm T. 2006. Preparation and characterization of boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy, Appl Radiat Isotopes, 64:315–324.
  • 7. Zhang X.W., Zou Y.J., Yan, H., Wang B., Chen G.H., Wong S.P. 2000. Electrical properties and annealing effects on the stress of RF-sputtered c-BN films, Mater Lett, 45:111–115.
  • 8. Nowack B., Bucheli T.D. 2007. Occurence, behavior and effects of nanoparticles in the environment, Pollution, 150-5-22.
  • 9. Özkan Y., Altınok İ., İlhan H., Sökmen M. 2015a. Determination of TiO2 and AgTiO2 nanoparticles in Artemia salina: Toxicity, morphological changes, uptake and deputation, Bull. Environ. Contam. Toxicology, DOI:10.1007/s00128-015-1634-1.
  • 10. Özkan Y., İrende İ., Akdeniz G., Kabakçı D., Sökmen M. 2015b. Evaluation of the comparative acute toxic effects of TiO2 and Ag-TiO2 and ZnO-TiO2 composite nanoparticles on Honey bee (Apis mellifera), J. Int. Evironmental Application & Science, vol. 10(1):26-36.
  • 11. Carpita N.C., Gibeaut D.M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular-structure with the physical properties of walls during growth, Plant Journal, 3:1-30.
  • 12. Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A., et al. 2008a. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi, Ecotoxicology, 17:372–86.
  • 13. Navarro E., Piccapietra F., Wagner B., Marconi F., Kaegi R., Odzak N., et al. 2008b. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii, Environ Sci Technology, 42: 8959–64.
  • 14. Lin S., Reppert J., Hu Q., Hunson J.S., Reid M.L., Ratnikova T., et al. 2009. Uptake, translocation and transmission of carbon nanomaterials in rice plants, Small, 1128–32.
  • 15. Liu Q., Chen B., Wang Q., Shi X., Xiao Z., Lin J., et al. 2009. Carbon nanotubes as molecular transporters for walled plant cells, Nano Letter, 9:1007–10.
  • 16. Vallyathan V., Shi X. 1997. The role of oxygen free radicals in occupational and environmental lung diseases, Environmental Health Perspectives, vol. 105, supplement 1, pp. 165–177.
  • 17. Bonner J.C. 2007. Lung fibrotic responses to particle exposure, Toxicologic Pathology, vol. 35, no. 1, pp. 148–153.
  • 18. Manke A., Wang L., Rojanasakul Y. 2013. Mechanisms of Nanoparticle-Induced Oxidative stres and toxicity, Biomed research international, volume, article ID 942916, 15 pages http://dx.doi.org/10.1155/2013/942916.
  • 19. Gill S.S., Tuteja N.2010 Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Dec;48(12):909-30.
  • 20. Knaapen A. M.,. Borm P.J.A., Albrecht C., Schins R.P.F. 2004. Inhaled particles and lung cancer, part A: mechanisms, International Journal of Cancer, vol. 109, no. 6, pp. 799–809.
  • 21. Risom L., Møller P., Loft S. 2005. Oxidative stress-induced DNA damage by particulate air pollution, Mutation Research, vol. 592, no. 1-2, pp. 119–137.
  • 22. Oberdörster G., Oberdörster E., Oberdörster J. 2005. Nanotoxicolgy. An emerging discipline evolving from studies of ultrafine particles, Health perspective, 113, 823-839.
  • 23. Daughton C.G. 2004. Non-Regulated Water Contaminants: Emerging Research, Environmental Impact Assessment Review, 24, 711-732.
  • 24. Wolverton B.C., McDonald R.C. 1975. Waterhyacinths and alligator weeds for removal of silver, cobalt, and strontium from polluted waters, NASA Tech. Memo. No. TM-X-72727.
  • 25. Wilde W.E., 1993. Benemann, J.R. Bioremoval of heavy metals by the use of microalgae, Biotechnology Advances, volume 11, Issue 4, 1993, Pages 781-812.
  • 26. Maeda S., Skaguchi T. 1990. Accumulation and detoxification of toxic metal elements by algae in: I. Akatsuka (Ed.), Introduction to Applied Phycology, Academic Publishing, The Hague (1990), pp. 109–136.
  • 27. Dağlıoğlu Y., Altınok İ., İlhan H., Sokmen M. 2016. Determination of the acute toxic effect of ZnO-TiO2 nanoparticles in brine shrimp (Artemia salina), Acta Biologica Turcica, 29(1)6-13.
  • 28. Grace J,B. Wetzel R.G. 1978. The production biology of Eurasian Watermilfoil (Myriophyllum spicatum L.): A review, J. Aquat. Plant Manage, 16:1-11.
  • 29. Smith C.S., Barko J.W. 1990. Ecology of Eurasian Watermilfoil, J. Aquat. Plant Manage, 28: 55-64.
  • 30. Altınayar G. 1988. Su Yabancı Otları. T.C. Bayındırlık ve İskan Bak. Dev. Su İşleri Genel Müd. İşletme ve Bakım Dairesi Başkanlığı, Ankara.
  • 31. Aiken S.G.,Newroth P.R, Wile I. 1979. Thebiology of Canadianweeds. 34. Myriophyllum spicatum L. CanadianJournal of PlantScience, 59. 201–215.
  • 32. Adams M. S., Titus, J., McCracken M. 1974. Depth distribution of photosynthetic activity in a Myriophyllum, spicatum community in Lake Wingra, Limnology and Oceanography, 19.3 (1974): 377-389.
  • 33. Barko J.W., Smart M. 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes, Ecology 67:1328-1340.
  • 34. Gross M.E., Meyer H., Schıllıng G. 1996. Release and ecologıcal ımpact of algıcıdal hydrolysable polyphenols ın Myriophyllum spicatum, First publ.in : phytochemistry, 41 pp. 133-138.
  • 35. Planas D., Sarhan F., Dube L., Godmaire H., Cadieux C. 1981. Verh. Int. Verein. Limnol. 21, 1492.
  • 36. Hothem S.D., Marley K.A. Larson R.A. 2003. Photochemistry in Hoagland’s nutrient solution, Journal of Plant Nutrition, 26,4, 845–854.
  • 37. Defontaine A., Lecocq M. F., Hallet J. 1991. A rapid miniprep method for the preparation of yeast mitochondrial DNA, Nucleic Acids Rsearch, November 1991, vol. 19, no. 1, p. 185.
  • 38. Heath R.L., Packer L. 1968. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys, 125, 189-198.
  • 39. Mukherjee S.P., Choudhuri M.A. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings, Physiol Plant, 58:166–170.
  • 40. Teranishi Y., Tanaka A., Osumi M., Fukui S. 1974. Catalas activity of hydrocarbon utilizing candida yeast, Agr. Biol. Chemistry, 38, 1213-1216.
  • 41. Beauchamp C., Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Analytical Biochemistry, vol. 44, no. 1, p. 276-287.
There are 41 citations in total.

Details

Journal Section Articles
Authors

Yeşim Dağlıoğlu

Sevda Türkiş

Publication Date December 25, 2017
Submission Date January 13, 2017
Published in Issue Year 2017 Volume: 6 Issue: 2

Cite

IEEE Y. Dağlıoğlu and S. Türkiş, “Myriophyllum spicatum’un Süperoksit Dismutaz Enzim Aktivitesi, Lipid Peroksidasyonu ve Hidrojen Peroksit Üzerine Nano ve Mikro Bor Partiküllerinin Etkisi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 6, no. 2, pp. 62–70, 2017, doi: 10.17798/bitlisfen.285792.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS