Research Article
PDF Mendeley EndNote BibTex Cite

Production and Characterization of Al-SiC Composites by Mechanical Milling

Year 2019, Volume 8, Issue 1, 227 - 233, 12.03.2019
https://doi.org/10.17798/bitlisfen.441420

Abstract

This study were investigated the effect of SiC amount and milling time on microstructure, density and hardness in the aluminum composites produced by mechanical milling. In the study, aluminum composites were mechanical milling at different times (30, 60, 90 and 120 min), adding SiC in different amounts (5%, 10%, 15% and 20%). A high chromium steel balls with a diameter of 6 mm, a ratio of 10:1 ball-powder and 2% stearic acid were used as milling component in the production of composites in a vibrating mill. The production of composite powders was carried out in an argon atmosphere. The composite powders produced were characterized using scanning electron microscopy, EDS analysis, optical microscope and powder size analyzer. As a result, it was observed that as the amount of added SiC and milling time increased, the powder size decreased and the hardness values increased. In addition, as the amount of added SiC increased, the densities of aluminum composites increased.

References

  • 1. Prabhu, B., Suryanarayana, C., An, L., Vaidyanathan, R. 2006. Synthesis and Characterization of High Volume Fraction Al–Al2O3 Nanocomposite Powders By High-Energy Milling. Materials Science and Engineering: A, 425(1-2), 192-200.
  • 2. Torralba, J. M., Velasco, F., Costa, C. E., Vergara, I., Cáceres, D. 2002. Mechanical Behaviour of The Interphase Between Matrix and Reinforcement Of Al 2014 Matrix Composites Reinforced With (Ni3Al) p. Composites Part A: Applied Science and Manufacturing, 33(3), 427-434.
  • 3. Smagorinski, M. E., Tsantrizos, P. G., Grenier, S., Cavasin, A., Brzezinski, T., Kim, G. 1998. The Properties and Microstructure of Al-Based Composites Reinforced With Ceramic Particles. Materials Science and Engineering: A, 244(1), 86-90.
  • 4. Erek, H. B., Ozyurek, D., Asan, A. 2017. Electrical Conductivity and Corrosion Performances of In Situ and Ex Situ AA7075 Aluminum Composites. Acta Physica Polonica A, 131(1), 153-155.
  • 5. Sundararajan, V. Aluminum Composites In Aerospace Applications. http://satyameva-jayate.net/almmc.htm, (Erişim tarihi: 4.12.2017).
  • 6. Mortensen, A., San-Marchi, C., Degischer, H. P. 2002. Glossary of Terms Specific to Metal Matrix Composites. MMC-Assess Thematic Network.
  • 7. Rajan, T.P.D., Pillai, R.M., Pai, B.C. 1998. Reinforcement Coatings and Interfaces ın Aluminium Metal Matrix Composites. Journal of Materials Science, 33(14), 3491-3503.
  • 8. Yu, P., Mei, Z., Tjong, S.C. 2005. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles. Materials Chemistry and Physics, 93(1), 109-116.
  • 9. Wannasin, J., Flemings, M.C. 2005. Fabrication of metal matrix composites by a high-pressure centrifugal infiltration process. Journal of Materials Processing Technology, 169(2), 143-149.
  • 10. Arifin, A., Sulong, A. B., Muhamad, N., Syarif, J., Ramli, M.I. 2014. Material Processing of Hydroxyapatite and Titanium Alloy (Ha/Ti) Composite as Implant Materials Using Powder Metallurgy: a review. Materials & Design, 55, 165-175.
  • 11. Zhao, N., Nash, P., Yang, X. 2005. The Effect of Mechanical Alloying on SiC Distribution and The Properties of 6061 Aluminum Composite. Journal of Materials Processing Technology, 170(3), 586-592.
  • 12. Suryanarayana, C. 2001. Mechanical alloying and milling. Progress in materials science, 46(1-2), 1-184.
  • 13. Sankar, R., Singh, P. 1998. Synthesis of 7075 Al/SiC Particulate Composite Powders by Mechanical Alloying. Materials Letters, 36(1-4), 201-205.
  • 14. Simsek, İ., Yıldırım, M., Tuncay, T., Ozyurek, D., Simsek, D. 2018. Mekanik Alaşimlama/Öğütme Yöntemi İle Üretilen Al-SiC Kompozitlerin İncelenmesi. Technological Applied Sciences, 13(2), 165-171.
  • 15. Parvin, N., Assadifard, R., Safarzadeh, P., Sheibani, S., Marashi, P. 2008. Preparation and Mechanical Properties of SiC-Reinforced Al6061 Composite By Mechanical Alloying. Materials Science and Engineering: A, 492(1-2), 134-140.
  • 16. Campbell, G. T., Raman, R., Fields, R. J. 2016, August. Optimum Press and Sinter Processing For Aluminum/SiC Composites. Aluminum Powder Metallurgy Conference.

Mekanik Öğütme İle Al-SiC Kompozitlerin Üretimi Ve Karakterizasyonu

Year 2019, Volume 8, Issue 1, 227 - 233, 12.03.2019
https://doi.org/10.17798/bitlisfen.441420

Abstract

Bu çalışmada, mekanik öğütme ile üretilen alüminyum kompozitlerde SiC miktarının ve öğütme süresinin mikro yapı, yoğunluk ve sertlik üzerine etkisi incelenmiştir. Çalışma kapsamında alüminyum kompozitler, farklı miktarlarda (%5, %10, %15 ve %20) SiC ilave edilerek farklı sürelerde (30, 60, 90 ve 120 dak) mekanik öğütülmüştür. Titreşimli değirmende yapılan kompozitlerin üretiminde öğütme elemanı olarak 6 mm çapında yüksek kromlu çelik bilya, 10:1 bilya-toz oranı ve %2 stearik asit (işlem kontrol kimyasalı) kullanılmıştır. Kompozit tozların üretimi argon ortamında yapılmıştır. Üretilen kompozit tozlar tarama elektron mikroskobu, EDAX analizleri, optik mikroskop ve toz boyut analizörü kullanılarak karakterize edilmiştir. Yapılan çalışmalar sonucunda, ilave edilen SiC miktarı ve öğütme süresi arttıkça toz boyutunda azalma görülürken, sertlik değerlerinde artış görülmektedir. Bununla birlikte ilave edilen SiC miktarı arttıkça da alüminyum kompozitlerin yoğunlukları artmaktadır. 

References

  • 1. Prabhu, B., Suryanarayana, C., An, L., Vaidyanathan, R. 2006. Synthesis and Characterization of High Volume Fraction Al–Al2O3 Nanocomposite Powders By High-Energy Milling. Materials Science and Engineering: A, 425(1-2), 192-200.
  • 2. Torralba, J. M., Velasco, F., Costa, C. E., Vergara, I., Cáceres, D. 2002. Mechanical Behaviour of The Interphase Between Matrix and Reinforcement Of Al 2014 Matrix Composites Reinforced With (Ni3Al) p. Composites Part A: Applied Science and Manufacturing, 33(3), 427-434.
  • 3. Smagorinski, M. E., Tsantrizos, P. G., Grenier, S., Cavasin, A., Brzezinski, T., Kim, G. 1998. The Properties and Microstructure of Al-Based Composites Reinforced With Ceramic Particles. Materials Science and Engineering: A, 244(1), 86-90.
  • 4. Erek, H. B., Ozyurek, D., Asan, A. 2017. Electrical Conductivity and Corrosion Performances of In Situ and Ex Situ AA7075 Aluminum Composites. Acta Physica Polonica A, 131(1), 153-155.
  • 5. Sundararajan, V. Aluminum Composites In Aerospace Applications. http://satyameva-jayate.net/almmc.htm, (Erişim tarihi: 4.12.2017).
  • 6. Mortensen, A., San-Marchi, C., Degischer, H. P. 2002. Glossary of Terms Specific to Metal Matrix Composites. MMC-Assess Thematic Network.
  • 7. Rajan, T.P.D., Pillai, R.M., Pai, B.C. 1998. Reinforcement Coatings and Interfaces ın Aluminium Metal Matrix Composites. Journal of Materials Science, 33(14), 3491-3503.
  • 8. Yu, P., Mei, Z., Tjong, S.C. 2005. Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and TiC submicron particles. Materials Chemistry and Physics, 93(1), 109-116.
  • 9. Wannasin, J., Flemings, M.C. 2005. Fabrication of metal matrix composites by a high-pressure centrifugal infiltration process. Journal of Materials Processing Technology, 169(2), 143-149.
  • 10. Arifin, A., Sulong, A. B., Muhamad, N., Syarif, J., Ramli, M.I. 2014. Material Processing of Hydroxyapatite and Titanium Alloy (Ha/Ti) Composite as Implant Materials Using Powder Metallurgy: a review. Materials & Design, 55, 165-175.
  • 11. Zhao, N., Nash, P., Yang, X. 2005. The Effect of Mechanical Alloying on SiC Distribution and The Properties of 6061 Aluminum Composite. Journal of Materials Processing Technology, 170(3), 586-592.
  • 12. Suryanarayana, C. 2001. Mechanical alloying and milling. Progress in materials science, 46(1-2), 1-184.
  • 13. Sankar, R., Singh, P. 1998. Synthesis of 7075 Al/SiC Particulate Composite Powders by Mechanical Alloying. Materials Letters, 36(1-4), 201-205.
  • 14. Simsek, İ., Yıldırım, M., Tuncay, T., Ozyurek, D., Simsek, D. 2018. Mekanik Alaşimlama/Öğütme Yöntemi İle Üretilen Al-SiC Kompozitlerin İncelenmesi. Technological Applied Sciences, 13(2), 165-171.
  • 15. Parvin, N., Assadifard, R., Safarzadeh, P., Sheibani, S., Marashi, P. 2008. Preparation and Mechanical Properties of SiC-Reinforced Al6061 Composite By Mechanical Alloying. Materials Science and Engineering: A, 492(1-2), 134-140.
  • 16. Campbell, G. T., Raman, R., Fields, R. J. 2016, August. Optimum Press and Sinter Processing For Aluminum/SiC Composites. Aluminum Powder Metallurgy Conference.

Details

Primary Language English
Journal Section Araştırma Makalesi
Authors

Doğan ŞİMŞEK (Primary Author)
BİTLİS EREN ÜNİVERSİTESİ, TEKNİK BİLİMLER MESLEK YÜKSEKOKULU
0000-0002-8326-9982
Türkiye


İjlal SİMSEK
KARABÜK ÜNİVERSİTESİ, MESLEK YÜKSEKOKULU
0000-0001-6542-8567
Türkiye


Dursun ÖZYÜREK
KARABÜK ÜNİVERSİTESİ, TEKNOLOJİ FAKÜLTESİ
0000-0002-2464-1182
Türkiye

Publication Date March 12, 2019
Application Date July 6, 2018
Acceptance Date November 14, 2018
Published in Issue Year 2019, Volume 8, Issue 1

Cite

IEEE D. Şimşek , İ. Simsek and D. Özyürek , "Production and Characterization of Al-SiC Composites by Mechanical Milling", Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 1, pp. 227-233, Mar. 2019, doi:10.17798/bitlisfen.441420

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS
E-mail: fbe@beu.edu.tr