Research Article
BibTex RIS Cite

Benzen Uçucu Organik Bileşiğinin Badem Kabuğundan Üretilen Char Üzerine Gaz Fazı Adsorpsiyonu: Kinetik, Denge ve Termodinamik

Year 2019, Volume: 8 Issue: 4, 1432 - 1445, 24.12.2019
https://doi.org/10.17798/bitlisfen.543583

Abstract

Uçucu Organik Bileşikler (UOB), soluduğumuz açık ve kapalı
ortam hava kirleticilerinin yaygın
bileşenleridir
. Bu
çalışmanın temel amacı, en önemli UOB’ler biri olan benzenin badem kabuklarından
üretilen char adsorbenti üzerine gaz fazı adsorpsiyon prosesini incelemektir. Bu
bağlamda, gaz-fazı benzen taşıyıcı olarak azot akış hızı (60-150 mL/min),
adsorpsiyon sıcaklığı (20-40℃), adsorbent miktarı (40-120 mg) ve giriş
akımındaki gaz-fazı benzen konsantrasyonu (9-18 ppm) gibi adsorpsiyon
koşullarının hem adsorpsiyon kapasitesi hem de adsorpsiyon verimi üzerindeki
etkileri gaz kromatografi yöntemi kullanılarak incelenmiştir. Bunun yanı sıra,
farklı sıcaklıklarda, adsorpsiyon prosesinin kinetiği, izotermi ve
termodinamiği araştırılmıştır. Char adsorbentinin karakterizasyonu BET yüzey
alanı ve FTIR ölçümleri ile gerçekleştirilmiştir. Sonuçlar, Langmuir izotermi
ve sözde-ikinci dereceden modellerin diğer modeller ile kıyaslandığında deneysel
verileri daha iyi tanımladığını göstermiştir. Char adsorbentinin maksimum tek
katmanlı adsorpsiyon kapasitesi (qmax)
25℃ için 10.56 mg g-1 olarak bulunmuştur. Termodinamik analizler (
ΔG° = -19.460 kJ mol-1,
ΔH° = -26.65 kJ mol-1, ΔS° = -0.024 kJ mol-1 K-1
) adsorpsiyon
prosesinin kendiliğinden, ekzotermik ve fiziksel olduğunu göstermiştir.
Elde edilen sonuçlar ışığında, badem kabuğundan
üretilen char adsorbentinin, çevre ve insan sağlığına
ilişkin riskleri nedeniyle gaz-fazı benzenin adsorpsiyon
yöntemiyle çevresel kontrolünü sağlamak için önemli bir potansiyele
sahip olduğu söylenebilir. 

References

  • George, I.J., et al., Volatile and semivolatile organic compounds in laboratory peat fire emissions. Atmospheric Environment, 2016. 132: p. 163-170.
  • Mo, J., et al., Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment, 2009. 43(14): p. 2229-2246.
  • Chiang, Y.-C., P.-C. Chiang, and C.-P. Huang, Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon, 2001. 39(4): p. 523-534.
  • Colman Lerner, J.E., et al., Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmospheric Environment, 2012. 55: p. 440-447.
  • Jones, A.P., Indoor air quality and health. Atmospheric Environment, 1999. 33(28): p. 4535-4564.
  • Roop Chand Bansal and M. Goyal, Activated Carbon Adsorption. 1 st ed. 2005, Boca Raton: Taylor & Francis Group. 263-265.
  • Gupta, V.K. and N. Verma, Removal of volatile organic compounds by cryogenic condensation followed by adsorption. Chemical Engineering Science, 2002. 57(14): p. 2679-2696.
  • Hwang, K.S., et al., Adsorption and thermal regeneration of methylene chloride vapor on an activated carbon bed. Chemical Engineering Science, 1997. 52(7): p. 1111-1123.
  • Khan, F.I. and A. Kr. Ghoshal, Removal of Volatile Organic Compounds from polluted air. Journal of Loss Prevention in the Process Industries, 2000. 13(6): p. 527-545.
  • Parra, M.A., et al., Quantification of indoor and outdoor volatile organic compounds (VOCs) in pubs and cafés in Pamplona, Spain. Atmospheric Environment, 2008. 42(27): p. 6647-6654.
  • Ruthven, D.M., Principles of Adsorption and Adsorption Processes. 1984, New York: John Wiley.
  • Allen, R.W.K., E. D Archer, and J. MacInnes, Adsorption by Particles Injected into a Gas Stream. Chem. Eng. J., 2001. 83: p. 165-174.
  • Allen, R.W.K., E.D. Archer, and J.M. MacInnes, Theoretical account of a dry sorption injection experiment. AIChE, 2001. 47(12): p. 2684-2695.
  • Archer, E.D., R.W.K. Allen, and J.M. MacInnes, Measurements of VOC take-up by adsorbing particles in a gas stream. Filtration & Separation, 2000. 37(10): p. 32-39.
  • Lillo-Ródenas, M.A., D. Cazorla-Amorós, and A. Linares-Solano, Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005. 43(8): p. 1758-1767.
  • Balathanigaimani, M.S., et al., Adsorption Isotherms of Benzene and Toluene on Corn Grain-Based Carbon Monolith at (303.15, 313.15, and 323.15) K. Journal of Chemical & Engineering Data, 2008. 53(3): p. 732-736.
  • Kutluay, S., O. Baytar, and Ö. Şahin, Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from elaeagnus angustifolia seeds. Journal of Environmental Chemical Engineering, 2019. 7(2): p. 102947.
  • Hassan, A.F., A.M. Abdel-Mohsen, and M.M.G. Fouda, Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydrate Polymers, 2014. 102: p. 192-198.
  • Noorimotlagh, Z., et al., Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch. Journal of the Taiwan Institute of Chemical Engineers, 2014. 45(4): p. 1783-1791.
  • Bazrafshan E., et al., Arsenic removal from aqueous environments using moringa peregrina seed extract as a natural coagulant. Asian Journal of Chemistry, 2013. 25: p. 3557-3561.
  • de Luna, M.D.G., et al., Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls—Optimization, isotherm and kinetic studies. Journal of the Taiwan Institute of Chemical Engineers, 2013. 44(4): p. 646-653.
  • Hameed, B.H. and M.I. El-Khaiary, Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. Journal of Hazardous Materials, 2008. 157(2): p. 344-351.
  • Shrestha, S., et al., Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber. Chemosphere, 2013. 92(8): p. 1053-1061.
  • Cherifi, H., B. Fatiha, and H. Salah, Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons. Applied Surface Science, 2013. 282: p. 52-59.
  • Ramirez, D., et al., Equilibrium and Heat of Adsorption for Organic Vapors and Activated Carbons. Environmental Science & Technology, 2005. 39(15): p. 5864-5871.
  • M. M. Vargas, A., et al., Adsorption of methylene blue on activated carbon produced from flamboyant pods ( Delonix regia): Study of adsorption isotherms and kinetic models. Vol. 168. 2011. 722-730.
  • Ammendola, P., F. Raganati, and R. Chirone, CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: Thermodynamics and kinetics. Chemical Engineering Journal, 2017. 322: p. 302-313.
  • Gürses, A., et al., The adsorption kinetics of the cationic dye, methylene blue, onto clay. Journal of Hazardous Materials, 2006. 131(1): p. 217-228.
  • Sari, A., et al., Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials, 2007. 149(2): p. 283-291.
  • Al-Ghouti, M.A., et al., Adsorption behaviour of methylene blue onto Jordanian diatomite: A kinetic study. Journal of Hazardous Materials, 2009. 165(1): p. 589-598.
  • Dursun, A.Y. and Ç.S. Kalayci, Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin. Journal of Hazardous Materials, 2005. 123(1): p. 151-157.
  • Magdy, Y.H. and A.A.M. Daifullah, Adsorption of a basic dye from aqueous solutions onto sugar-industry-mud in two modes of operations. Waste Management, 1998. 18(4): p. 219-226.
  • Ayranci, E. and N. Hoda, Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere, 2005. 60(11): p. 1600-1607.
  • Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. , 1918. 40: p. 1361–1368.
  • Freundlich, H.M.F., Over the Adsorption in Solution. The Journal of Physical Chemistry, 1906. 57: p. 385-471.
  • Liu, Q.-S., et al., Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 2010. 157(2): p. 348-356.
  • Zhou, X., et al., Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber. Chemical Engineering Journal, 2012. 200-202: p. 399-404.
  • Tran, H.N., S.-J. You, and H.-P. Chao, Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. Journal of Environmental Chemical Engineering, 2016. 4(3): p. 2671-2682.
  • Singh, V.K. and E. Anil Kumar, Measurement and analysis of adsorption isotherms of CO2 on activated carbon. Applied Thermal Engineering, 2016. 97: p. 77-86.
  • Anandkumar, J. and B. Mandal, Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies. Journal of Hazardous Materials, 2011. 186(2): p. 1088-1096.

Gas Phase Adsorption of Benzene Volatile Organic Compound onto Char Produced from Almond Shells: Kinetics, Equilibrium and Thermodynamics

Year 2019, Volume: 8 Issue: 4, 1432 - 1445, 24.12.2019
https://doi.org/10.17798/bitlisfen.543583

Abstract

Volatile Organic Compounds (VOCs) are prevalent components of indoor and
outdoor air pollutants that we breathe. The main purpose of this study is to
investigate gas phase adsorption process of benzene, which is one of the most
important VOCs, onto char adsorbent produced from almond shells. In this
context, t
he effects of the
adsorption conditions such as nitrogen (N2) gas flow rate (60-150 mL
min-1) as the gas phase benzene carrier, adsorbent amount (40-120 mg),
concentration of gas phase
benzene
at the inlet (9-18 ppm) and the adsorption temperature (20-40) on both the
adsorption capacity and the adsorption efficiency were
investigated using gas chromatography method. In addition, the kinetics,
isotherms and thermodynamics of the adsorption process were investigated at
different temperatures. The characterization of the char adsorbent was
performed by BET surface area and FTIR measurements. The results showed that the
Langmuir isotherm and pseudo-second-order models described the experimental
data better when compared to the other models. The maximum
monolayer adsorption
capacity
(qmax)
of char adsorbent was found to be 10.56 mg g-1 for 25℃. Thermodynamic
analysis (ΔG° = -19.460 kJ mol-1,
ΔH° = -26.65 kJ mol-1, ΔS° = -0.024 kJ mol-1 K-1
) showed that the adsorption process was spontaneous,
exothermic and physical. In the light of the results obtained, it can be said
that char adsorbent produced from almond shell has an important potential for
environmental control by the adsorption method of gas-phase benzene due to the
risks related to the environment and human health. 

References

  • George, I.J., et al., Volatile and semivolatile organic compounds in laboratory peat fire emissions. Atmospheric Environment, 2016. 132: p. 163-170.
  • Mo, J., et al., Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment, 2009. 43(14): p. 2229-2246.
  • Chiang, Y.-C., P.-C. Chiang, and C.-P. Huang, Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon, 2001. 39(4): p. 523-534.
  • Colman Lerner, J.E., et al., Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina. Atmospheric Environment, 2012. 55: p. 440-447.
  • Jones, A.P., Indoor air quality and health. Atmospheric Environment, 1999. 33(28): p. 4535-4564.
  • Roop Chand Bansal and M. Goyal, Activated Carbon Adsorption. 1 st ed. 2005, Boca Raton: Taylor & Francis Group. 263-265.
  • Gupta, V.K. and N. Verma, Removal of volatile organic compounds by cryogenic condensation followed by adsorption. Chemical Engineering Science, 2002. 57(14): p. 2679-2696.
  • Hwang, K.S., et al., Adsorption and thermal regeneration of methylene chloride vapor on an activated carbon bed. Chemical Engineering Science, 1997. 52(7): p. 1111-1123.
  • Khan, F.I. and A. Kr. Ghoshal, Removal of Volatile Organic Compounds from polluted air. Journal of Loss Prevention in the Process Industries, 2000. 13(6): p. 527-545.
  • Parra, M.A., et al., Quantification of indoor and outdoor volatile organic compounds (VOCs) in pubs and cafés in Pamplona, Spain. Atmospheric Environment, 2008. 42(27): p. 6647-6654.
  • Ruthven, D.M., Principles of Adsorption and Adsorption Processes. 1984, New York: John Wiley.
  • Allen, R.W.K., E. D Archer, and J. MacInnes, Adsorption by Particles Injected into a Gas Stream. Chem. Eng. J., 2001. 83: p. 165-174.
  • Allen, R.W.K., E.D. Archer, and J.M. MacInnes, Theoretical account of a dry sorption injection experiment. AIChE, 2001. 47(12): p. 2684-2695.
  • Archer, E.D., R.W.K. Allen, and J.M. MacInnes, Measurements of VOC take-up by adsorbing particles in a gas stream. Filtration & Separation, 2000. 37(10): p. 32-39.
  • Lillo-Ródenas, M.A., D. Cazorla-Amorós, and A. Linares-Solano, Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. Carbon, 2005. 43(8): p. 1758-1767.
  • Balathanigaimani, M.S., et al., Adsorption Isotherms of Benzene and Toluene on Corn Grain-Based Carbon Monolith at (303.15, 313.15, and 323.15) K. Journal of Chemical & Engineering Data, 2008. 53(3): p. 732-736.
  • Kutluay, S., O. Baytar, and Ö. Şahin, Equilibrium, kinetic and thermodynamic studies for dynamic adsorption of benzene in gas phase onto activated carbon produced from elaeagnus angustifolia seeds. Journal of Environmental Chemical Engineering, 2019. 7(2): p. 102947.
  • Hassan, A.F., A.M. Abdel-Mohsen, and M.M.G. Fouda, Comparative study of calcium alginate, activated carbon, and their composite beads on methylene blue adsorption. Carbohydrate Polymers, 2014. 102: p. 192-198.
  • Noorimotlagh, Z., et al., Adsorption of a textile dye in aqueous phase using mesoporous activated carbon prepared from Iranian milk vetch. Journal of the Taiwan Institute of Chemical Engineers, 2014. 45(4): p. 1783-1791.
  • Bazrafshan E., et al., Arsenic removal from aqueous environments using moringa peregrina seed extract as a natural coagulant. Asian Journal of Chemistry, 2013. 25: p. 3557-3561.
  • de Luna, M.D.G., et al., Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls—Optimization, isotherm and kinetic studies. Journal of the Taiwan Institute of Chemical Engineers, 2013. 44(4): p. 646-653.
  • Hameed, B.H. and M.I. El-Khaiary, Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K2CO3 activation and subsequent gasification with CO2. Journal of Hazardous Materials, 2008. 157(2): p. 344-351.
  • Shrestha, S., et al., Isotherm and thermodynamic studies of Zn (II) adsorption on lignite and coconut shell-based activated carbon fiber. Chemosphere, 2013. 92(8): p. 1053-1061.
  • Cherifi, H., B. Fatiha, and H. Salah, Kinetic studies on the adsorption of methylene blue onto vegetal fiber activated carbons. Applied Surface Science, 2013. 282: p. 52-59.
  • Ramirez, D., et al., Equilibrium and Heat of Adsorption for Organic Vapors and Activated Carbons. Environmental Science & Technology, 2005. 39(15): p. 5864-5871.
  • M. M. Vargas, A., et al., Adsorption of methylene blue on activated carbon produced from flamboyant pods ( Delonix regia): Study of adsorption isotherms and kinetic models. Vol. 168. 2011. 722-730.
  • Ammendola, P., F. Raganati, and R. Chirone, CO2 adsorption on a fine activated carbon in a sound assisted fluidized bed: Thermodynamics and kinetics. Chemical Engineering Journal, 2017. 322: p. 302-313.
  • Gürses, A., et al., The adsorption kinetics of the cationic dye, methylene blue, onto clay. Journal of Hazardous Materials, 2006. 131(1): p. 217-228.
  • Sari, A., et al., Equilibrium, kinetic and thermodynamic studies of adsorption of Pb(II) from aqueous solution onto Turkish kaolinite clay. Journal of Hazardous Materials, 2007. 149(2): p. 283-291.
  • Al-Ghouti, M.A., et al., Adsorption behaviour of methylene blue onto Jordanian diatomite: A kinetic study. Journal of Hazardous Materials, 2009. 165(1): p. 589-598.
  • Dursun, A.Y. and Ç.S. Kalayci, Equilibrium, kinetic and thermodynamic studies on the adsorption of phenol onto chitin. Journal of Hazardous Materials, 2005. 123(1): p. 151-157.
  • Magdy, Y.H. and A.A.M. Daifullah, Adsorption of a basic dye from aqueous solutions onto sugar-industry-mud in two modes of operations. Waste Management, 1998. 18(4): p. 219-226.
  • Ayranci, E. and N. Hoda, Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere, 2005. 60(11): p. 1600-1607.
  • Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. , 1918. 40: p. 1361–1368.
  • Freundlich, H.M.F., Over the Adsorption in Solution. The Journal of Physical Chemistry, 1906. 57: p. 385-471.
  • Liu, Q.-S., et al., Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal, 2010. 157(2): p. 348-356.
  • Zhou, X., et al., Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber. Chemical Engineering Journal, 2012. 200-202: p. 399-404.
  • Tran, H.N., S.-J. You, and H.-P. Chao, Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. Journal of Environmental Chemical Engineering, 2016. 4(3): p. 2671-2682.
  • Singh, V.K. and E. Anil Kumar, Measurement and analysis of adsorption isotherms of CO2 on activated carbon. Applied Thermal Engineering, 2016. 97: p. 77-86.
  • Anandkumar, J. and B. Mandal, Adsorption of chromium(VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies. Journal of Hazardous Materials, 2011. 186(2): p. 1088-1096.
There are 40 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Sinan Kutluay 0000-0002-6340-0752

Publication Date December 24, 2019
Submission Date March 22, 2019
Acceptance Date July 11, 2019
Published in Issue Year 2019 Volume: 8 Issue: 4

Cite

IEEE S. Kutluay, “Benzen Uçucu Organik Bileşiğinin Badem Kabuğundan Üretilen Char Üzerine Gaz Fazı Adsorpsiyonu: Kinetik, Denge ve Termodinamik”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 4, pp. 1432–1445, 2019, doi: 10.17798/bitlisfen.543583.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS