Research Article
BibTex RIS Cite

3/2 Ağırlıklı Hecke Eigenformlar Üzerine

Year 2019, Volume: 8 Issue: 4, 1203 - 1208, 24.12.2019

Abstract

Bu çalışmada kuadratik formların teta serileri yardımıyla elde verilen ve Shimura yükseltmesi ile Modülarite Teoremi yardımıyla eliptik eğrilere karşılık gelen üç adet 3/2 ağırlıklı Hecke eigenformların ait oldukları yarım tamsayı ağırlıklı modüler form uzaylarının baz vektörleri cinsinden ifade edilmiştir. İspatlarda bu Hecke eigenformların Fourier açılımlarından faydalanılmış olup, Sturm sınırı sayesinde belirli sayıda Fourier katsayısının birbirine eşit olması halinde iki modüler formun tamamen birbirine eşit olduğu gerçeği kullanılmıştır. 

References

  • Bosma, W., Cannon, J., Playsout, C. 1997. The Magma Algebra System I, The User Language, J. Symbolic Comput., 24, 235-265.
  • Cohen, H., Oesterlé, J. 1977. Dimensiones des espaces de formes modulaires, Modular Functions of One Variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn), Springer, 69-78.
  • Cohen, H., Strömberg, F. 2017. Modular Forms: A Classical Approach. Amer. Math. Society, Graduate Studies in Mathematics: 179.
  • Cohen, H. 2019. Modular Forms, Notes from International Autumn School on Computational Number Theory (Tutorials, Schools, and Workshops in the Mathematical Sciences), Eds: Ilker Inam and Engin Büyükaşık: 3-62.
  • Frey, G. 1994. Construction and Arithmetical Applications of Modular Forms of Low Weight, CRM Proceedings & Lecture Notes Amer. Math. Soc. 4, 1-21.
  • Pari/GP Computer Algebra System 2019. https://pari.math.u-bordeaux.fr (Erişim Tarihi: 23.03.2019)
  • Stein, W. 2007. Modular Forms, a Computational Approach, Amer. Math. Society, Graduate Studies in Mathematics: 79.

On the Hecke Eigenforms of Weight 3/2

Year 2019, Volume: 8 Issue: 4, 1203 - 1208, 24.12.2019

Abstract

In this paper, three 3/2-weight Hecke eigenforms corresponding to elliptic curves with the help of Shimura lift and Modularity Theorem with the help of the theta series of quadratic forms are expressed in terms of the basis vectors of the half-integral weight modular form spaces. In the proofs, the Fourier expansions of these Hecke eigenforms and the fact that two modular forms are equal to each other when a certain number of Fourier coefficients are equal by Sturm bound are used.

References

  • Bosma, W., Cannon, J., Playsout, C. 1997. The Magma Algebra System I, The User Language, J. Symbolic Comput., 24, 235-265.
  • Cohen, H., Oesterlé, J. 1977. Dimensiones des espaces de formes modulaires, Modular Functions of One Variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn), Springer, 69-78.
  • Cohen, H., Strömberg, F. 2017. Modular Forms: A Classical Approach. Amer. Math. Society, Graduate Studies in Mathematics: 179.
  • Cohen, H. 2019. Modular Forms, Notes from International Autumn School on Computational Number Theory (Tutorials, Schools, and Workshops in the Mathematical Sciences), Eds: Ilker Inam and Engin Büyükaşık: 3-62.
  • Frey, G. 1994. Construction and Arithmetical Applications of Modular Forms of Low Weight, CRM Proceedings & Lecture Notes Amer. Math. Soc. 4, 1-21.
  • Pari/GP Computer Algebra System 2019. https://pari.math.u-bordeaux.fr (Erişim Tarihi: 23.03.2019)
  • Stein, W. 2007. Modular Forms, a Computational Approach, Amer. Math. Society, Graduate Studies in Mathematics: 79.
There are 7 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

İlker İnam 0000-0001-5765-1718

Ezgi Çıvgın This is me

Publication Date December 24, 2019
Submission Date April 1, 2019
Acceptance Date July 19, 2019
Published in Issue Year 2019 Volume: 8 Issue: 4

Cite

IEEE İ. İnam and E. Çıvgın, “3/2 Ağırlıklı Hecke Eigenformlar Üzerine”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 4, pp. 1203–1208, 2019.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS