Research Article
BibTex RIS Cite

The Effect of Pressure to the Crystalization and Glass Transition Temperature of Liquid PdSi Alloy Modeled with Quantum Sutton-Chen Potential

Year 2019, Volume: 8 Issue: 4, 1233 - 1242, 24.12.2019

Abstract

In this work, the effect of pressure on the
crystallization (Tc) and glass transition (Tg)
temperatures of a modelled PdSi liquid alloy was investigated for different
cooling rates by using Quantum Sutton Chen(K-SC) potential which is used to
determine the interactions between atoms. It was determined that at the cooling
rates of 2,5x1011 K/s and 2,5x1012 K/s the alloy system
in liquid phase transformed into crystal and amorphous phase, respectively. The
glass transition temperature was defined by the Wendt-Abraham parameter and
radial distribution function (RDF) peaks. It was concluded that the increment
of pressure led to an increase in the crystallization and glass transition
temperatures and the ratio of Tg/Tm resulted in an
improvement of the glass forming ability.

References

  • 1. Qi L., Zhang H., Hu Z. 2004. Molecular dynamic simulation of glass formation in binary liquid metal: Cu–Ag using EAM, Intermetallics, 12 (10-11): 1191-1195.
  • 2. Ozgen S., Duruk E. 2004. Molecular dynamics simulation of solidification kinetics of aluminium using Sutton–Chen version of EAM, Materials Letters, 58 (6): 1071-1075.
  • 3. Wang W.-H., Dong C., Shek C. 2004. Bulk metallic glasses, Materials Science and Engineering: R: Reports, 44 (2-3): 45-89.
  • 4. Cong H.-R., Bian X.-F., Zhang J.-X., Li H. 2002. Structure properties of Cu-Ni alloys at the rapid cooling rate using embedded-atom method, Materials Science and Engineering: A, 326 (2): 343-347.
  • 5. Qi L., Zhang H., Hu Z., Liaw P. 2004. Molecular dynamic simulation studies of glass formation and atomic-level structures in Pd–Ni alloy, Physics Letters A, 327 (5-6): 506-511.
  • 6. Schroers J., Pham Q., Peker A., Paton N., Curtis R. V. 2007. Blow molding of bulk metallic glass, Scripta Materialia, 57 (4): 341-344.
  • 7. Laws K., Gun B., Ferry M. 2006. Effect of die-casting parameters on the production of high quality bulk metallic glass samples, Materials Science and Engineering: A, 425 (1-2): 114-120.
  • 8. Busch R., Kim Y., Johnson W. 1995. Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5 alloy, Journal of applied physics, 77 (8): 4039-4043.
  • 9. Luzzi D., Meshii M. 1986. Criteria for the amorphisation of intermetallic compounds under electron irradiation, Scripta metallurgica, 20 (6): 943-948.
  • 10. Etemadi R. 2014. Effect of processing parameters and matrix shrinkage on porosity formation during synthesis of metal matrix composites with dual-scale fiber reinforcements using pressure infiltration process. University of Wisconsin Uw milwaukee, Master of Science in Engineering, Master, ABD.
  • 11. Tuli M., Strutt P. R. 1978. Claitor's Publishing Devision, B. Rouge Louisiana: 113.
  • 12. Yan M., Sun J. F., Shen J. 2004. Isothermal annealing induced embrittlement of Zr41. 25Ti13. 75Ni10Cu12. 5Be22. 5 bulk metallic glass, Journal of alloys and compounds, 381 (1-2): 86-90.
  • 13. Xi X. K. 2005. Preparation of Mg-based bulk metallic glasses and their fracture behaviors. Institute of Physics, CAS.
  • 14. Faruq M., Villesuzanne A., Shao G. 2018. Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties, Journal of Non-Crystalline Solids, 487: 72-86.
  • 15. Hui L., Pederiva F. 2004. Structural study of local order in quenched lead under high pressures, Chemical physics, 304 (3): 261-271.
  • 16. Wang Z., Wang R., Wang W. 2006. Elastic properties of Cu60Zr20Hf10Ti10 bulk metallic glass under high pressure, Materials Letters, 60 (6): 831-833.
  • 17. Shimojo F., Hoshino K., Zempo Y. 2002. Intermediate-range order in liquid and amorphous As2S3 by ab initio molecular-dynamics simulations, Journal of non-crystalline solids, 312: : 388-391.
  • 18. Çağın T., Dereli G., Uludoğan M., Tomak M. 1999. Thermal and mechanical properties of some fcc transition metals, Physical Review B, 59 (5): 3468.
  • 19. Zhang X.-J., Chen C.-L. 2012. Phonon dispersion in the Fcc metals Ca, Sr and Yb, Journal of Low Temperature Physics, 169 (1-2): 40-50.
  • 20. Tolpin K., Bachurin V., Yurasova V. 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 273: 76-79.
  • 21. Louail L., Maouche D., Roumili A., Hachemi A. 2005. Pressure effect on elastic constants of some transition metals, Materials chemistry and physics, 91 (1): 17-20.
  • 22. Pelaz L., Marqués L. A., Aboy M., López P., Barbolla J. 2005. Atomistic modeling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation, Computational materials science, 33 (1-3): 92-105.
  • 23. Shao Y., Clapp P. C., Rifkin J. 1996. Molecular dynamics simulation of martensitic transformations in NiAI, Metallurgical and Materials Transactions A, 27 (6): 1477-1489.
  • 24. Daw M. S., Hatcher R. 1985. Application of the embedded atom method to phonons in transition metals, Solid state communications, 56 (8): 697-699.
  • 25. Voter A. F., Chen S. P. 1986. Accurate interatomic potentials for Ni, Al and Ni3Al, MRS Online Proceedings Library Archive, 82: 175.
  • 26. Finnis M., Sinclair J. 1984. A simple empirical N-body potential for transition metals, Philosophical Magazine A, 50 (1): 45-55.
  • 27. Sutton A., Chen J. 1990. Long-range finnis–sinclair potentials, Philosophical Magazine Letters, 61 (3): 139-146.
  • 28. Grujicic M., Dang P. 1995. Computer simulation of martensitic transformation in Fe-Ni face-centered cubic alloys, Materials Science and Engineering: A, 201 (1-2): 194-204.
  • 29. Gui J., Cui Y., Xu S., Wang Q., Ye Y., Xiang M., Wang R. 1994. Embedded-atom method study of the effect of the order degree on the lattice parameters of Cu-based shape memory alloys, Journal of Physics: Condensed Matter, 6 (24): 4601.
  • 30. Caprion D., Schober H. 2003. Computer simulation of liquid and amorphous selenium, Journal of non-crystalline solids, 326: 369-373.
  • 31. Parrinello M., Rahman A. 1980. Crystal structure and pair potentials: A molecular-dynamics study, Physical Review Letters, 45 (14): 1196.
  • 32. Parrinello M., Rahman A. 1981. Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied physics, 52 (12): 7182-7190.
  • 33. Rigby M., Maitland G. C., Smith E. B., Wakeham W. A. 1986. The forces between molecules.
  • 34. Baxi H., Massalski T. 1991. The pdsi (palladiumsilicon) system, Journal of phase equilibria, 12 (3): 349-356.
  • 35. Wang L., Peng C., Wang Y., Zhang Y. 2006. Relating nucleation to dynamical and structural heterogeneity in supercooled liquid metal, Physics Letters A, 350 (1-2): 69-74.
  • 36. Shimono M., Onodera H. 2001. Molecular dynamics study on formation and crystallization of Ti–Al amorphous alloys, Materials Science and Engineering: A, 304: : 515-519.

The Effect of Pressure to the Crystallization and Glass Transition Temperature of Liquid PdSi Alloy Modelled with Quantum Sutton-Chen Potential

Year 2019, Volume: 8 Issue: 4, 1233 - 1242, 24.12.2019

Abstract

Bu
çalışmada atomlar arasındaki etkileşmelerin belirlenmesinde Kuantum Sutton Chen
(K-SC) potansiyel fonksiyonu kullanılarak farklı soğutma hızları için model
PdSi sıvı alaşımının kristallenme (Tc) ve camsı geçiş sıcaklıklarına (Tg)
basıncınetkisi incelendi. 2,5x1011 K/s ve 2,5x1012K/s soğutma hızlarında sıvı
fazdaki alaşım sisteminin sırasıyla kristal ve amorf faza dönüştüğü tespit
edildi. Camsı geçiş sıcaklığı Wendt-Abraham parametresi ve radyal dağılım
fonksiyonu (RDF) piklerinden belirlendi. Basınç artışınınkristallenme, camsı
geçiş sıcaklığıve Tg/Tm oranınıyükselterek camsı oluşum kabiliyetini arttırdığı
tespit edildi. 

References

  • 1. Qi L., Zhang H., Hu Z. 2004. Molecular dynamic simulation of glass formation in binary liquid metal: Cu–Ag using EAM, Intermetallics, 12 (10-11): 1191-1195.
  • 2. Ozgen S., Duruk E. 2004. Molecular dynamics simulation of solidification kinetics of aluminium using Sutton–Chen version of EAM, Materials Letters, 58 (6): 1071-1075.
  • 3. Wang W.-H., Dong C., Shek C. 2004. Bulk metallic glasses, Materials Science and Engineering: R: Reports, 44 (2-3): 45-89.
  • 4. Cong H.-R., Bian X.-F., Zhang J.-X., Li H. 2002. Structure properties of Cu-Ni alloys at the rapid cooling rate using embedded-atom method, Materials Science and Engineering: A, 326 (2): 343-347.
  • 5. Qi L., Zhang H., Hu Z., Liaw P. 2004. Molecular dynamic simulation studies of glass formation and atomic-level structures in Pd–Ni alloy, Physics Letters A, 327 (5-6): 506-511.
  • 6. Schroers J., Pham Q., Peker A., Paton N., Curtis R. V. 2007. Blow molding of bulk metallic glass, Scripta Materialia, 57 (4): 341-344.
  • 7. Laws K., Gun B., Ferry M. 2006. Effect of die-casting parameters on the production of high quality bulk metallic glass samples, Materials Science and Engineering: A, 425 (1-2): 114-120.
  • 8. Busch R., Kim Y., Johnson W. 1995. Thermodynamics and kinetics of the undercooled liquid and the glass transition of the Zr41. 2Ti13. 8Cu12. 5Ni10. 0Be22. 5 alloy, Journal of applied physics, 77 (8): 4039-4043.
  • 9. Luzzi D., Meshii M. 1986. Criteria for the amorphisation of intermetallic compounds under electron irradiation, Scripta metallurgica, 20 (6): 943-948.
  • 10. Etemadi R. 2014. Effect of processing parameters and matrix shrinkage on porosity formation during synthesis of metal matrix composites with dual-scale fiber reinforcements using pressure infiltration process. University of Wisconsin Uw milwaukee, Master of Science in Engineering, Master, ABD.
  • 11. Tuli M., Strutt P. R. 1978. Claitor's Publishing Devision, B. Rouge Louisiana: 113.
  • 12. Yan M., Sun J. F., Shen J. 2004. Isothermal annealing induced embrittlement of Zr41. 25Ti13. 75Ni10Cu12. 5Be22. 5 bulk metallic glass, Journal of alloys and compounds, 381 (1-2): 86-90.
  • 13. Xi X. K. 2005. Preparation of Mg-based bulk metallic glasses and their fracture behaviors. Institute of Physics, CAS.
  • 14. Faruq M., Villesuzanne A., Shao G. 2018. Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties, Journal of Non-Crystalline Solids, 487: 72-86.
  • 15. Hui L., Pederiva F. 2004. Structural study of local order in quenched lead under high pressures, Chemical physics, 304 (3): 261-271.
  • 16. Wang Z., Wang R., Wang W. 2006. Elastic properties of Cu60Zr20Hf10Ti10 bulk metallic glass under high pressure, Materials Letters, 60 (6): 831-833.
  • 17. Shimojo F., Hoshino K., Zempo Y. 2002. Intermediate-range order in liquid and amorphous As2S3 by ab initio molecular-dynamics simulations, Journal of non-crystalline solids, 312: : 388-391.
  • 18. Çağın T., Dereli G., Uludoğan M., Tomak M. 1999. Thermal and mechanical properties of some fcc transition metals, Physical Review B, 59 (5): 3468.
  • 19. Zhang X.-J., Chen C.-L. 2012. Phonon dispersion in the Fcc metals Ca, Sr and Yb, Journal of Low Temperature Physics, 169 (1-2): 40-50.
  • 20. Tolpin K., Bachurin V., Yurasova V. 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 273: 76-79.
  • 21. Louail L., Maouche D., Roumili A., Hachemi A. 2005. Pressure effect on elastic constants of some transition metals, Materials chemistry and physics, 91 (1): 17-20.
  • 22. Pelaz L., Marqués L. A., Aboy M., López P., Barbolla J. 2005. Atomistic modeling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation, Computational materials science, 33 (1-3): 92-105.
  • 23. Shao Y., Clapp P. C., Rifkin J. 1996. Molecular dynamics simulation of martensitic transformations in NiAI, Metallurgical and Materials Transactions A, 27 (6): 1477-1489.
  • 24. Daw M. S., Hatcher R. 1985. Application of the embedded atom method to phonons in transition metals, Solid state communications, 56 (8): 697-699.
  • 25. Voter A. F., Chen S. P. 1986. Accurate interatomic potentials for Ni, Al and Ni3Al, MRS Online Proceedings Library Archive, 82: 175.
  • 26. Finnis M., Sinclair J. 1984. A simple empirical N-body potential for transition metals, Philosophical Magazine A, 50 (1): 45-55.
  • 27. Sutton A., Chen J. 1990. Long-range finnis–sinclair potentials, Philosophical Magazine Letters, 61 (3): 139-146.
  • 28. Grujicic M., Dang P. 1995. Computer simulation of martensitic transformation in Fe-Ni face-centered cubic alloys, Materials Science and Engineering: A, 201 (1-2): 194-204.
  • 29. Gui J., Cui Y., Xu S., Wang Q., Ye Y., Xiang M., Wang R. 1994. Embedded-atom method study of the effect of the order degree on the lattice parameters of Cu-based shape memory alloys, Journal of Physics: Condensed Matter, 6 (24): 4601.
  • 30. Caprion D., Schober H. 2003. Computer simulation of liquid and amorphous selenium, Journal of non-crystalline solids, 326: 369-373.
  • 31. Parrinello M., Rahman A. 1980. Crystal structure and pair potentials: A molecular-dynamics study, Physical Review Letters, 45 (14): 1196.
  • 32. Parrinello M., Rahman A. 1981. Polymorphic transitions in single crystals: A new molecular dynamics method, Journal of Applied physics, 52 (12): 7182-7190.
  • 33. Rigby M., Maitland G. C., Smith E. B., Wakeham W. A. 1986. The forces between molecules.
  • 34. Baxi H., Massalski T. 1991. The pdsi (palladiumsilicon) system, Journal of phase equilibria, 12 (3): 349-356.
  • 35. Wang L., Peng C., Wang Y., Zhang Y. 2006. Relating nucleation to dynamical and structural heterogeneity in supercooled liquid metal, Physics Letters A, 350 (1-2): 69-74.
  • 36. Shimono M., Onodera H. 2001. Molecular dynamics study on formation and crystallization of Ti–Al amorphous alloys, Materials Science and Engineering: A, 304: : 515-519.
There are 36 citations in total.

Details

Primary Language English
Journal Section Araştırma Makalesi
Authors

Canan Aksu Canbay 0000-0002-5151-4576

Sefa Kazanc 0000-0002-8896-8571

Publication Date December 24, 2019
Submission Date May 8, 2019
Acceptance Date September 19, 2019
Published in Issue Year 2019 Volume: 8 Issue: 4

Cite

IEEE C. A. Canbay and S. Kazanc, “The Effect of Pressure to the Crystalization and Glass Transition Temperature of Liquid PdSi Alloy Modeled with Quantum Sutton-Chen Potential”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 8, no. 4, pp. 1233–1242, 2019.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS