Fe+ İyonu Aşılanmış TiO2 Tek Kristallerin Manyetik Özelliklerinin İncelenmesi
Year 2020,
Volume: 9 Issue: 1, 50 - 59, 13.03.2020
Özgül Karataş
Abstract
Bu
çalışmada, oda sıcaklığında demir (Fe+) iyonları ile aşılanmış (100)
ve (001) kristal yönelimine sahip tek kristal ve polikristal TiO2
alttaşların manyetik özellikleri sunulmaktadır. İyon aşılama sonrasında ısıl
işleme tabi tutulan ve tutulmayan örneklerin mıknatıslanma, g- faktörü ve
kristal manyetik anizotropileri Elektron Manyetik Rezonans (EMR) ve Titreşimli
Örnek Manyetometre (VSM) teknikleri kullanılarak incelenmiştir. Deneysel
veriler teorik bir modele dayandırılarak özel bir bilgisayar programı ile fit
edilmiştir. Elde edilen sonuçlar, aşılanmış örneklerin ferromanyetik bir
davranış sergilediklerini ve manyetik özelliklerinin örneğin kristal yönelimine
oldukça bağlı olduğunu göstermiştir.
Thanks
Çalışmada değerli katkılarından dolayı Prof. Dr. Bulat Rameev, Dr. Öğr. Üyesi Sinan Kazan ve Dr. Öğr. Üyesi Cengiz Okay’a; kullanılan örneklerin aşılanması için laboratuvar olanaklarını sunan Prof. Dr. Rustam I. Khaibullin’e ve laboratuvar desteğinden dolayı Gebze Teknik Üniversitesi’ne teşekkür ederim.
References
- [1] Zerentürk A., Açıkgöz M., Kazan S., Yıldız F., Aktaş B., Khaibullin R.I., Rameev B. 2017. Low Temperature EPR Investigation of Co2+ Ion Doped into Rutile TiO2 Single Crystal: Experiments and Simulations, Journal of Magnetism and Magnetic Materials, 423: 145-151.
- [2] Joshi S.R., Padmanabhan B., Chanda A., Ojha S., Kanjilal D., Varma S. 2017. Complex Damage Distribution Behaviour in Cobalt Implanted Rutile TiO2 (110) Lattice, Nuclear Instruments and Methods in Physics Research B, 410: 114-121.
- [3] Wu S.Y., Zheng W.C. 2002. Studies of EPR g-Factors on Rutile (TiO2) with Co2+ Ion, Z. Naturforsch, 57a: 45–48.
- [4] Li H., Zhang Y., Wang S., Wu Q., Liu C. 2009. Study on Nanomagnets Supported TiO2 Photocatalysts Prepared by a Sol-gel Process in Reverse Microemulsion Combining with Solvent- Thermal Technique, J. Hazard Mater, 30, 169(1-3): 1045-53.
- [5] Liao D. L., Liao B.Q. 2007. Shape, Size and Photocatalytic Activity Control of TiO2 Nanoparticles with Surfantants, Journal of Photochemistry and Photobiology A: Chemistry, 187(2-3): 363-369.
- [6] O’Regan B., Gratzel M. 1991. A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films, Nature, 353: 737-740.
- [7] Joshi S.R., Padmanabhan B., Chanda A., Mishra I., Malik V.K., Mishra N.C., Kanjilal D., Varma S. 2016. Optical Studies of Cobalt ımplanted rutile TiO2 (110) surface, Applied Surface Science, 387: 938-943.
- [8] Ghosh A.K., Maruska H.P. 1977. Photoelectrolysis of Water in Sunlight with Sensitized Semiconductor Electrodes, J. Electrochem. Soc., 124(10): 1516-1522.
- [9] Pickett M.D., Medeiros-Ribeiro G., Williams R.S. 2013. A Scalable Neuristor Built with Mott Memristors, Nat. Mater., 12: 114-117.
- [10] Chua L.O. 1971. Memristor-The Missing Circuit Element, IEEE Transactions on Circuit Theory, CT-18 (5): 507–519.
- [11] Strukov D.B., Snider G.S., Stewart D.R., Williams R.S. 2008. The Missing Memristor Found, Nature, 453: 80–83.
- [12] Campbell S.A., Kim H.-S., Gilmer D.C., He B., Ma T., Gladfelter W.L. 1999. Titanium Dioxide (TiO2)-based Gate Insulators, Ibm Journal of Research and Development, 43(3): 383-392.
- [13] Ohno H. 1999. Properties of Ferromagnetic III-V Semiconductors, Journal of Magnetism and Magnetic Materials, 200 (1-3): 110-129.
- [14] Dietl T., Ohno H., Matsukura F., Cibert J., Ferrand D. 2000. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors, Science, 287(5455): 1019-22.
- [15] Matsumoto Y., Murakami M., Shono T., Hasegawa T., Fukumura T., Kawasaki M., Ahmet P., Chikyow T., Koshihara S., Koinuma H. 2001. Room-temperature Ferromagnetism in Transparent Transition Metal-doped Titanium Dioxide, Science, 291 (5505): 854-6.
- [16] Okay C., Vakhitov I.R., Valeev V.F., Khaibullin R.I., Rameev B. 2017. Magnetic Resonance Study of Fe-implanted TiO2 Rutile, Appl. Magn. Reson., 48: 347-360.
- [17] Akdogan N., Nefedov A., Zabel H., Westerholt K., Becker H.-W, Somsen C., Gok S., Bashir A., Khaibullin R., Tagirov L. 2009. High-temperature Ferromagnetism in Co-implanted TiO2 Rutile, Journal of Physics D: Applied Physics, 42(11): 115005.
- [18] Rameev B., Okay C., Yildiz F., Khaibullin R.I., Popok V.N., Aktas B. 2004. Ferromagnetic Resonance Investigations of Cobalt-implanted Polyimides, Journal of magnetism and magnetic materials, 278 (1-2): 164-171.
- [19] Mikaizade F., Maksutoglu M., Khaibullin R.I., Valeev V.F., Nuzhdin V.I., Aliyeva V.B., Mammadov T.G. 2016. Magnetodielectric Effects in Co-implanted TilnS2 and TiGaSe2 Crystals, Phase Transitions, 89(6): 568-577.
- [20] Khalitov N.I., Khaibullin R.I., Valeev V.F., Dulov E.N., Ivoilov N.G., Tagirov L.R., Kazan S., Sale A.G., Mikailzade F.A. 2012. Structural and Magnetic Studies of Co and Fe Implanted BaTiO3 Crystals, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 272: 104-107.
- [21] Guskos N., Glenis S., Zolnierkiewicz G., Guskos A., Typek J., Berczynski P., Dolat D., Mozia S., Morawski A.W. 2015. Magnetic Properties of Co-modified Fe, N-TiO2 Nanocomposites, Open Physcis, 13: 78-82.
- [22] Errico L.A., Rentería M., Weissmann M. 2005. Theoretical Study of Magnetism in Transition- metal-doped TiO2 and TiO2-, Physical Review B, 72: 184425.
- [23] Geng W.T., Kim Kwang S. 2003. Structural, Electronic, and Magnetic Properties of a Ferromagnetic Semiconductor: Co-doped TiO2 rutile, Physical Review B, 68: 125203.
- [24] Xiang B.X., Jiao Y., Guan J., Wang L. 2015. Ion Implantation Induced Blistering of Rutile Single Crystals, Nuclear Instruments and Methods in Physics Research B, 354: 255-258.
- [25] Huo-Ping Z., Nan-Nan X., Gong-Ping L., Tian-Jing L., Xing-xin G., Jing-Sheng C. 2013. The Magnetic Properties and Microscopic Structural of a Ferromegnaetic Semiconductor: Rutile TiO2 Single Crystals Implanted with Cobalt Ions, Surface&Coating Technology, 229: 109-111.
- [26] Kittel, C.,1996. Introduction to Solid State Physics, Wiley Yayınları, 487s. New York.
- [27] Weil, J.A., Bolton, J.R., 2007. Electron Paramagnetic Resonance, Wiley Yayınları, 36s. Kanada.
- [28] Poole, C.P., Horacio, Jr., Farach, A. 1986. Theory of Magnetic Resonance, Wiley Yayınları, 138s. Kanada.
- [29] Yıldız F., Rameev B., Khaibullin R., Tagirov L., Özdemir M. Aktas B., 2004. Giant Room Temperature Ferromagnetism in Rutile TiO2 Implanted by Co, Physica Status Solidi C,1(12), 3319-3323.
- [30] Khaibullin R.I., Tagirov L.R., Rameev B.Z., Ibragimov Sh.Z., Yıldız F., Aktas B. 2004. High Curie-temperature Ferromagnetism in Cobalt-implanted Single-crystalline Rutile, J. Phys. Condens. Matter, 16: L443-L449.
- [31] Akdogan N., Rameev B.Z., Dorosinsky L., Sozeri H., Khaibullin R.I., Aktas B., Tagirov L.R., Westphalen A., Zabel H. 2005. Anisotropy of Ferromagnetism in Co-implanted Rutile, J. Phys. Condens. Matter, 17: L359-L366.
- [32] Cruz M.M., Silva R.C., Pinto J.V., Borges R.P., Franco N., Casaca A. 2013. Formation of Oriented Nickel Aggregates in Rutile Single Crystals by Ni Implantation, Journal of Magnetism and Magnetic Materials, 340: 102-108.
- [33] Khaibullin R.I., Ibragimov Sh.Z., Tagirov L.R., Popok V.N., Khaibullin I.B. 2007. Formation of Anisotropic Ferromagnetic Response in Rutile (TiO2) Implanted with Cobalts Ions, Nucl. Instrum. Methods Phys. Res. B, 257(1-2): 369-373.
- [34] Okay C., Rameev B.Z., Guler S., Khaibullin R.I., Khakimova R.R., Osin Y.N., Akdogan N., Gumarov A.I., Nefedov A., Zabel H., Aktas B. 2011. Optical and Magnetic Properties of Ni- Implanted and Post-annealed ZnO Thin Films, Appl. Phys. A, 104(2): 667-675.
- [35] Zhou S., Talut G., Potzger K., Shalimov A., Grenzer J., Skorupa W., Helm, Fassbender J., Cizmar E., Zvyagin S.A., Wosnitza J. 2008. Crystallographically Oriented Fe Nanocrystals Formed in Fe-Implanted TiO2, Journal of Applied Physics, 103: 083907.
- [36] Dulov E.N., Ivoilov N.G., Khripunov D.M., Tagirov L.R., Khaibullin R.I., Valev V.F., Nuzhdin V.I. 2009. Mössbauer Study of The Magnetic Phase Composition of Single-crystalline Rutile (TiO2) Implanted with Iron Ions, Techical Physics Letters, 35(6): 483-486.
- [37] Guler S., Rameev B., Khaibullin R.I., Bayrakdar H., Aktas B. 2006. EPR Study of Paramagnetic Fe3+ Centers in Iron-implanted TiO2 Rutile, Phys. Status Solidi A, 203(7): 1533-1538.
- [38] Topkaya R., Kazan S. 2014. Enhancement of Exchange Bias with Crystal Orientation in NiFe/CoO and CoO/NiFe Bilayers Grown on MgO(100) and MgO(111), Journal of Magnetism and Magnetic Materials, 368: 300-307.
- [39] Kakazei G.N., Kravets A.F., Lesnik N.A., Pereira de Azevedo M.M., Pogorelov Y.G., Sousa J.B. 1999. Ferromagnetic Resonance in Granular Thin Films, Journal of Applied Physics, 85(8): 5654-5656.
- [40] Dubowik J. 1996. Shape Anisotropy of Magnetic Heterostructures, Physical Review B, 54 (2): 1088-1091.
- [41] Netzelmann U. 1990. Feromagnetic Resonance of Particulate Magnetic Recording Tapes, Journal of Applied Physics 68(4): 1800-1807.
- [42] Okay C., Rameev B.Z., Khaibullin R.I., Okutan M., Yıldız F., Popok V.N., Aktas B. 2006. Ferromagnetic Resonance Study of Iron Implanted PET Foils, Phys. Stat. Sol., 203(7), 1525-1532.
- [43] Rameev B., Okay C.,Yıldız F., Khaibullin R.I., Popok V.N., Aktas B. 2004. Ferromagnetic Resonance Investigations of Cobalt-implanted Polymides, Journal of Magnetism and Magnetic Materials, 278: 164-171.