Research Article
BibTex RIS Cite

Fırçasız DC Motorunun Eksen Kaçıklığı ve Kırık Mıknatıs Arızalarının Tespitinin Bilgisayar Benzetimi ile Yapılması

Year 2020, Volume: 9 Issue: 2, 846 - 861, 15.06.2020
https://doi.org/10.17798/bitlisfen.595943

Abstract

Bu çalışma fırçasız DC motorlarda (BLDC) oluşabilecek
arızalar önceden belirlenerek motor çalışmasının devamlılığının sağlanması ve
oluşabilecek olumsuzlukları önlemek açısından önem taşımaktadır. Hem arıza
tespiti ve arıza şiddetinin belirlenmesi hem de sabit mıknatıslı motorunun
tasarımı sonlu elemanlar yöntemi kullanılarak gerçekleştirildi. Sonlu elemanlar
yöntemi kullanılarak motor analizleri yapıldı. Sonlu elemanlar yöntemiyle
sağlıklı motor, arızalı motor ve bu arızaların farklı şiddetlerinde
simülasyonlar gerçekleştirildi. Endüksiyon motoru için Hızlı Fourier Dönüşümü
(FFT) uygun görülürken BLDC motoru için trapezoidal sinyal çıkışından dolayı Dalgacık
dönüşüm (WT) yöntemi kullanılarak analiz gerçekleştirilmiştir. Bu çalışmada
daha az belirgin olmayan durum analiz edilmiştir. FFT ve WT ölçülenler ile iyi
bir uyum içinde olduğunu göstermiştir. Önerilen yöntemi kullanarak stator akımı
ve stator geriliminin sabit mıknatıs arıza tespiti için yararlı olduğunu
göstermiştir. Ayrıca, farklı sınıflandırıcılar kullanarak karşılaştırma
yapılmıştır. İncelenen k-NN, MLP ve RF algoritması sınıflandırma da
doğruluğunun oldukça kayda değer olduğu bulunmuştur.



 

References

  • [1] O. Zandi and J. Poshtan, “Fault Diagnosis of Brushless DC Motors Using Built-in Hall Sensors,” IEEE Sens. J., 2019.
  • [2] G. Choi and T. M. Jahns, “Post-demagnetization characteristics of permanent magnet synchronous machines,” in 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 2015.
  • [3] M. S. Khan, U. V. Okonkwo, A. Usman, and B. S. Rajpurohit, “Finite Element Modeling of Demagnetization Fault in Permanent Magnet Direct Current Motors,” in IEEE Power and Energy Society General Meeting, 2018.
  • [4] A. Polat, L. T. ERGENE, and H. Bakhtiarzadeh, “Asansör Uygulamalarında Kullanılan Daimi Mıknatıslı Senkron Motor Tasarımı,” Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg., vol. 2018, no. 2018, pp. 757–770, 2018.
  • [5] C. Bruzzese, “Diagnosis of eccentric rotor in synchronous machines by analysis of split-phase currents - Part I: Theoretical analysis,” IEEE Trans. Ind. Electron., 2014.
  • [6] A. G. Espinosa, J. A. Rosero, J. Cusidó, L. Romeral, and J. A. Ortega, “Fault detection by means of Hilbert-Huang transform of the stator current in a PMSM with demagnetization,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 312–318, 2010.
  • [7] M. A. S. K. Khan and M. A. Rahman, “Development and Implementation of a Novel Fault Diagnostic and Protection Technique for IPM Motor Drives,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 85–92, 2009.
  • [8] J. A. Rosero, L. Romeral, J. Cusidó, A. Garcia, and J. A. Ortega, “On the short-circuiting fault detection in a PMSM by means of stator current transformations,” PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., pp. 1936–1941, 2007.
  • [9] Y. Lee and T. G. Habetler, “An on-line stator turn fault detection method for interior PM synchronous motor drives,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 825–831, 2007.
  • [10] B. M. Ebrahimi and J. Faiz, “Feature extraction for short-circuit fault detection in permanent-magnet synchronous motors using stator-current monitoring,” IEEE Trans. Power Electron., 2010.
  • [11] A. Stavrou, H. G. Sedding, and J. Penman, “Current monitoring for detecting inter-turn short circuits in induction motors,” IEEE Trans. Energy Convers., vol. 16, no. 1, pp. 32–37, 2001.
  • [12] P. Silvester and M. V. K. Chari, “Finite Element Solution of Saturable Magnetic Field Problems,” IEEE Trans. Power Appar. Syst., 1970.
  • [13] S. J. Salon, Finite Element Analysis of Electrical Machines. 2011.
  • [14] & H. Witten, I. H. , Frank, E., Practical Machine Learning Tools and Techniques. 2011.
  • [15] P. S. Panigrahy, P. Konar, and P. Chattopadhyay, “Application of data mining in fault diagnosis of induction motor,” in 2016 IEEE 1st International Conference on Control, Measurement and Instrumentation, CMI 2016, 2016.
  • [16] F. Gürbüz and F. Turna, “Rule extraction for tram faults via data mining for safe transportation,” Transp. Res. Part A Policy Pract., 2018.
  • [17] S. Sjökvist and S. Eriksson, “Experimental verification of a simulation model for partial demagnetization of permanent magnets,” IEEE Trans. Magn., 2014.
  • [18] H. Chen, R. Qu, J. Li, and D. Li, “Demagnetization Performance of a 7 MW Interior Permanent Magnet Wind Generator with Fractional-Slot Concentrated Windings,” IEEE Trans. Magn., 2015.
  • [19] Y. Da, X. Shi, and M. Krishnamurthy, “Health monitoring, fault diagnosis and failure prognosis techniques for brushless permanent magnet machines,” in 2011 IEEE Vehicle Power and Propulsion Conference, VPPC 2011, 2011.
  • [20] A. Usman, B. M. Joshi, and B. S. Rajpurohit, “Review of fault modeling methods for permanent magnet synchronous motors and their comparison,” in Proceedings of the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2017, 2017.
  • [21] S. M. Mirimani, A. Vahedi, F. Marignetti, and E. De Santis, “Static eccentricity fault detection in single-stator-single-rotor axial-flux permanent-magnet machines,” IEEE Trans. Ind. Appl., 2012.
  • [22] J. R. Cameron, W. T. Thomson, and A. B. Dow, “Vibration and current monitoring for detecting airgap eccentricity in large induction motors,” IEE Proc. B Electr. Power Appl., 1986.
  • [23] K. Kang, J. Song, C. Kang, S. Sung, and G. Jang, “Real-Time Detection of the Dynamic Eccentricity in Permanent-Magnet Synchronous Motors by Monitoring Speed and Back EMF Induced in an Additional Winding,” IEEE Trans. Ind. Electron., 2017.
  • [24] A. Sapena-Bañó, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman, and D. Matić, “Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current’s FFT,” IEEE Trans. Instrum. Meas., 2015.
  • [25] T. Goktas, M. Zafarani, and B. Akin, “Discernment of Broken Magnet and Static Eccentricity Faults in Permanent Magnet Synchronous Motors,” IEEE Trans. Energy Convers., 2016.
Year 2020, Volume: 9 Issue: 2, 846 - 861, 15.06.2020
https://doi.org/10.17798/bitlisfen.595943

Abstract

References

  • [1] O. Zandi and J. Poshtan, “Fault Diagnosis of Brushless DC Motors Using Built-in Hall Sensors,” IEEE Sens. J., 2019.
  • [2] G. Choi and T. M. Jahns, “Post-demagnetization characteristics of permanent magnet synchronous machines,” in 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 2015.
  • [3] M. S. Khan, U. V. Okonkwo, A. Usman, and B. S. Rajpurohit, “Finite Element Modeling of Demagnetization Fault in Permanent Magnet Direct Current Motors,” in IEEE Power and Energy Society General Meeting, 2018.
  • [4] A. Polat, L. T. ERGENE, and H. Bakhtiarzadeh, “Asansör Uygulamalarında Kullanılan Daimi Mıknatıslı Senkron Motor Tasarımı,” Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg., vol. 2018, no. 2018, pp. 757–770, 2018.
  • [5] C. Bruzzese, “Diagnosis of eccentric rotor in synchronous machines by analysis of split-phase currents - Part I: Theoretical analysis,” IEEE Trans. Ind. Electron., 2014.
  • [6] A. G. Espinosa, J. A. Rosero, J. Cusidó, L. Romeral, and J. A. Ortega, “Fault detection by means of Hilbert-Huang transform of the stator current in a PMSM with demagnetization,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 312–318, 2010.
  • [7] M. A. S. K. Khan and M. A. Rahman, “Development and Implementation of a Novel Fault Diagnostic and Protection Technique for IPM Motor Drives,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 85–92, 2009.
  • [8] J. A. Rosero, L. Romeral, J. Cusidó, A. Garcia, and J. A. Ortega, “On the short-circuiting fault detection in a PMSM by means of stator current transformations,” PESC Rec. - IEEE Annu. Power Electron. Spec. Conf., pp. 1936–1941, 2007.
  • [9] Y. Lee and T. G. Habetler, “An on-line stator turn fault detection method for interior PM synchronous motor drives,” Conf. Proc. - IEEE Appl. Power Electron. Conf. Expo. - APEC, pp. 825–831, 2007.
  • [10] B. M. Ebrahimi and J. Faiz, “Feature extraction for short-circuit fault detection in permanent-magnet synchronous motors using stator-current monitoring,” IEEE Trans. Power Electron., 2010.
  • [11] A. Stavrou, H. G. Sedding, and J. Penman, “Current monitoring for detecting inter-turn short circuits in induction motors,” IEEE Trans. Energy Convers., vol. 16, no. 1, pp. 32–37, 2001.
  • [12] P. Silvester and M. V. K. Chari, “Finite Element Solution of Saturable Magnetic Field Problems,” IEEE Trans. Power Appar. Syst., 1970.
  • [13] S. J. Salon, Finite Element Analysis of Electrical Machines. 2011.
  • [14] & H. Witten, I. H. , Frank, E., Practical Machine Learning Tools and Techniques. 2011.
  • [15] P. S. Panigrahy, P. Konar, and P. Chattopadhyay, “Application of data mining in fault diagnosis of induction motor,” in 2016 IEEE 1st International Conference on Control, Measurement and Instrumentation, CMI 2016, 2016.
  • [16] F. Gürbüz and F. Turna, “Rule extraction for tram faults via data mining for safe transportation,” Transp. Res. Part A Policy Pract., 2018.
  • [17] S. Sjökvist and S. Eriksson, “Experimental verification of a simulation model for partial demagnetization of permanent magnets,” IEEE Trans. Magn., 2014.
  • [18] H. Chen, R. Qu, J. Li, and D. Li, “Demagnetization Performance of a 7 MW Interior Permanent Magnet Wind Generator with Fractional-Slot Concentrated Windings,” IEEE Trans. Magn., 2015.
  • [19] Y. Da, X. Shi, and M. Krishnamurthy, “Health monitoring, fault diagnosis and failure prognosis techniques for brushless permanent magnet machines,” in 2011 IEEE Vehicle Power and Propulsion Conference, VPPC 2011, 2011.
  • [20] A. Usman, B. M. Joshi, and B. S. Rajpurohit, “Review of fault modeling methods for permanent magnet synchronous motors and their comparison,” in Proceedings of the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, SDEMPED 2017, 2017.
  • [21] S. M. Mirimani, A. Vahedi, F. Marignetti, and E. De Santis, “Static eccentricity fault detection in single-stator-single-rotor axial-flux permanent-magnet machines,” IEEE Trans. Ind. Appl., 2012.
  • [22] J. R. Cameron, W. T. Thomson, and A. B. Dow, “Vibration and current monitoring for detecting airgap eccentricity in large induction motors,” IEE Proc. B Electr. Power Appl., 1986.
  • [23] K. Kang, J. Song, C. Kang, S. Sung, and G. Jang, “Real-Time Detection of the Dynamic Eccentricity in Permanent-Magnet Synchronous Motors by Monitoring Speed and Back EMF Induced in an Additional Winding,” IEEE Trans. Ind. Electron., 2017.
  • [24] A. Sapena-Bañó, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman, and D. Matić, “Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current’s FFT,” IEEE Trans. Instrum. Meas., 2015.
  • [25] T. Goktas, M. Zafarani, and B. Akin, “Discernment of Broken Magnet and Static Eccentricity Faults in Permanent Magnet Synchronous Motors,” IEEE Trans. Energy Convers., 2016.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Mehmet Recep Minaz 0000-0001-8046-6465

Publication Date June 15, 2020
Submission Date July 24, 2019
Acceptance Date December 6, 2019
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

IEEE M. R. Minaz, “Fırçasız DC Motorunun Eksen Kaçıklığı ve Kırık Mıknatıs Arızalarının Tespitinin Bilgisayar Benzetimi ile Yapılması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 2, pp. 846–861, 2020, doi: 10.17798/bitlisfen.595943.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS