Research Article
BibTex RIS Cite

Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları

Year 2020, Volume: 9 Issue: 2, 662 - 670, 15.06.2020
https://doi.org/10.17798/bitlisfen.642608

Abstract

Farklı
aktif karbon konsantrasyonları ( %5, %10 ve %20) kullanılarak aktif karbon
destekli CdS fotokatalizörler hidrotermal tekniği kullanılarak sentezlenmiştir.
Sentezlenen %5, %10 ve %20 aktif karbon destekli CdS fotokatalizörler sırasıyla
CdS_1, CdS_2 ve CdS_3 şeklinde isimlendirilmiştir. Fotokatalitik deneylerin
birinci aşamasında metilen mavisinin fotokatalitik bozundurulmasında en iyi
fotokatalitik aktiviteye sahip olan fotokatalizör belirlendi. Daha sonra bu
fotokatalizör varlığında, katalizör miktarı ve boya konsantrasyonu gibi farklı
parametrelerin metilen mavisinin fotokatalitik bozundurulmasını nasıl
etkilediği incelenmiştir. Çalışmanın son kısmından en iyi fotokatalitik
aktiviteye sahip olan fotokatalizörün yapısal, morfolojik ve elementsel
özellikleri sırasıyla x-ışını difraksiyonu (XRD), taramalı elektron mikroskobu
(SEM) ve enerji dağıtıcı x-ışını (EDX) cihazları ile karakterize edilmiştir.

Supporting Institution

Siirt Üniversitesi

Project Number

2019-SİÜFEB-005

Thanks

Bu çalışma Siirt Üniversitesi Bilimsel Araştırma Projeleri Başkanlığı tarafından 2019-SİÜFEB-005 projesi kapsamında desteklenmiştir.

References

  • [1] Baytar, O., et al., Synthesis, structural, optical and photocatalytic properties of Fe-alloyed CdZnS nanoparticles. 2018. Journal of Materials Science: Materials in Electronics, 29(6): 4564-4568.
  • [2] Eren, H., Impact of Technology on Environment. 2002.
  • [3] Horoz, S., et al., 2018. Photocatalytic degradation of methylene blue with Co alloyed CdZnS nanoparticles. Journal of Materials Science: Materials in Electronics, 29(2): 1004-1010.
  • [4] Das, S. and H. Mahalingam, 2019. Dye degradation studies using immobilized pristine and waste polystyrene-TiO2/rGO/g-C3N4 nanocomposite photocatalytic film in a novel airlift reactor under solar light. Journal of Environmental Chemical Engineering, 7(5): p. 103289.
  • [5] Hussein, A.A., M. Alzuhairi, and N.H. Aljanabi, 1968. Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor. AIP Conference Proceedings, 2018. (1): p. 030081.
  • [6] Salami, J. and C.M. Crews, 2017. Waste disposal—An attractive strategy for cancer therapy. Science,. 355(6330): p. 1163.
  • [7] Reddy, K.R., et al.,2016. Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron, 120:169-174.
  • [8] Taghavi Fardood, S., et al.,2017. Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. Journal of Materials Science: Materials in Electronics, 28(18):13596-13601.
  • [9] Abbasi, S. and M. Hasanpour, 2017. The effect of pH on the photocatalytic degradation of methyl orange using decorated ZnO nanoparticles with SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 28(2): 1307-1314.
  • [10] Horoz, S. and O. Sahin, 2017. Synthesis, characterizations and photovoltaic properties of Cr-doped CdS QDs. Journal of Materials Science: Materials in Electronics, 28(23):17784-17790.
  • [11] Park, H., W. Choi, and M.R. Hoffmann, 2008. Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. Journal of Materials Chemistry, 18(20):2379-2385.
  • [12] Jia, X., et al., 2016. Direct Z-scheme composite of CdS and oxygen-defected CdWO4: An efficient visible-light-driven photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 198:154-161.
  • [13] Neelgund, G.M. and A. Oki, 2011. Photocatalytic activity of CdS and Ag(2)S quantum dots deposited on poly(amidoamine) functionalized carbon nanotubes. Applied catalysis. B, Environmental, 110: 99-107.
  • [14] Li, Q., et al., 2011. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 133(28): 10878-10884.
  • [15] Cai, Q., et al., 2017. Fullerene (C60)/CdS nanocomposite with enhanced photocatalytic activity and stability. Applied Surface Science, 403:151-158.[16] Wang, Q., et al. 2017. Preparation of carbon spheres supported CdS photocatalyst for enhancement its photocatalytic H2 evolution. Catalysis Today, 281: 662-668.
  • [17] Liu, S.X., X.Y. Chen, and X. Chen, 2007. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. Journal of Hazardous Materials, 143(1): 257-263.
  • [18] Wang, X., et al., 2009. Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. Journal of Hazardous Materials, 169(1): 1061-1067.
  • [19] Laohhasurayotin, K. and S. Pookboonmee, 2013. Multifunctional properties of Ag/TiO2/bamboo charcoal composites: Preparation and examination through several characterization methods. Applied Surface Science, 282: 236-244.
  • [20] Huang, H.-B., et al., 2017. Photodegradation of Rhodamine B over Biomass-Derived Activated Carbon Supported CdS Nanomaterials under Visible Irradiation. Frontiers in Chemistry, 5(123).
  • [21] Guo, J., et al., 2016. CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property. Chemical Physics Letters, 659: 66-69.
  • [22] Hu, Y., et al., 2010. Coating Colloidal Carbon Spheres with CdS Nanoparticles: Microwave-Assisted Synthesis and Enhanced Photocatalytic Activity. Langmuir, 26(23): 18570-18575.
  • [23] Balushi, B., et al., 2018. Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Applied Surface Science, 457.
  • [24] Tian, Z., et al., 2017. Hydrothermal synthesis of graphene/TiO2/CdS nanocomposites as efficient visible-light-driven photocatalysts. Materials Letters, 194: 172-175.
  • [25] Zou, S., et al., 2015. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability. Chinese Journal of Catalysis, 36(7): 1077-1085.
Year 2020, Volume: 9 Issue: 2, 662 - 670, 15.06.2020
https://doi.org/10.17798/bitlisfen.642608

Abstract

Project Number

2019-SİÜFEB-005

References

  • [1] Baytar, O., et al., Synthesis, structural, optical and photocatalytic properties of Fe-alloyed CdZnS nanoparticles. 2018. Journal of Materials Science: Materials in Electronics, 29(6): 4564-4568.
  • [2] Eren, H., Impact of Technology on Environment. 2002.
  • [3] Horoz, S., et al., 2018. Photocatalytic degradation of methylene blue with Co alloyed CdZnS nanoparticles. Journal of Materials Science: Materials in Electronics, 29(2): 1004-1010.
  • [4] Das, S. and H. Mahalingam, 2019. Dye degradation studies using immobilized pristine and waste polystyrene-TiO2/rGO/g-C3N4 nanocomposite photocatalytic film in a novel airlift reactor under solar light. Journal of Environmental Chemical Engineering, 7(5): p. 103289.
  • [5] Hussein, A.A., M. Alzuhairi, and N.H. Aljanabi, 1968. Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor. AIP Conference Proceedings, 2018. (1): p. 030081.
  • [6] Salami, J. and C.M. Crews, 2017. Waste disposal—An attractive strategy for cancer therapy. Science,. 355(6330): p. 1163.
  • [7] Reddy, K.R., et al.,2016. Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron, 120:169-174.
  • [8] Taghavi Fardood, S., et al.,2017. Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. Journal of Materials Science: Materials in Electronics, 28(18):13596-13601.
  • [9] Abbasi, S. and M. Hasanpour, 2017. The effect of pH on the photocatalytic degradation of methyl orange using decorated ZnO nanoparticles with SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 28(2): 1307-1314.
  • [10] Horoz, S. and O. Sahin, 2017. Synthesis, characterizations and photovoltaic properties of Cr-doped CdS QDs. Journal of Materials Science: Materials in Electronics, 28(23):17784-17790.
  • [11] Park, H., W. Choi, and M.R. Hoffmann, 2008. Effects of the preparation method of the ternary CdS/TiO2/Pt hybrid photocatalysts on visible light-induced hydrogen production. Journal of Materials Chemistry, 18(20):2379-2385.
  • [12] Jia, X., et al., 2016. Direct Z-scheme composite of CdS and oxygen-defected CdWO4: An efficient visible-light-driven photocatalyst for hydrogen evolution. Applied Catalysis B: Environmental, 198:154-161.
  • [13] Neelgund, G.M. and A. Oki, 2011. Photocatalytic activity of CdS and Ag(2)S quantum dots deposited on poly(amidoamine) functionalized carbon nanotubes. Applied catalysis. B, Environmental, 110: 99-107.
  • [14] Li, Q., et al., 2011. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. Journal of the American Chemical Society, 133(28): 10878-10884.
  • [15] Cai, Q., et al., 2017. Fullerene (C60)/CdS nanocomposite with enhanced photocatalytic activity and stability. Applied Surface Science, 403:151-158.[16] Wang, Q., et al. 2017. Preparation of carbon spheres supported CdS photocatalyst for enhancement its photocatalytic H2 evolution. Catalysis Today, 281: 662-668.
  • [17] Liu, S.X., X.Y. Chen, and X. Chen, 2007. A TiO2/AC composite photocatalyst with high activity and easy separation prepared by a hydrothermal method. Journal of Hazardous Materials, 143(1): 257-263.
  • [18] Wang, X., et al., 2009. Degradation of methyl orange by composite photocatalysts nano-TiO2 immobilized on activated carbons of different porosities. Journal of Hazardous Materials, 169(1): 1061-1067.
  • [19] Laohhasurayotin, K. and S. Pookboonmee, 2013. Multifunctional properties of Ag/TiO2/bamboo charcoal composites: Preparation and examination through several characterization methods. Applied Surface Science, 282: 236-244.
  • [20] Huang, H.-B., et al., 2017. Photodegradation of Rhodamine B over Biomass-Derived Activated Carbon Supported CdS Nanomaterials under Visible Irradiation. Frontiers in Chemistry, 5(123).
  • [21] Guo, J., et al., 2016. CdS loaded on coal based activated carbon nanofibers with enhanced photocatalytic property. Chemical Physics Letters, 659: 66-69.
  • [22] Hu, Y., et al., 2010. Coating Colloidal Carbon Spheres with CdS Nanoparticles: Microwave-Assisted Synthesis and Enhanced Photocatalytic Activity. Langmuir, 26(23): 18570-18575.
  • [23] Balushi, B., et al., 2018. Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Applied Surface Science, 457.
  • [24] Tian, Z., et al., 2017. Hydrothermal synthesis of graphene/TiO2/CdS nanocomposites as efficient visible-light-driven photocatalysts. Materials Letters, 194: 172-175.
  • [25] Zou, S., et al., 2015. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability. Chinese Journal of Catalysis, 36(7): 1077-1085.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Mehmet Sait Izgi 0000-0003-3685-3219

Cihan Zörer This is me 0000-0002-7620-6529

Orhan Baytar 0000-0002-2915-202X

Ömer Şahin 0000-0003-4575-3762

Sabit Horoz 0000-0002-3238-8789

Project Number 2019-SİÜFEB-005
Publication Date June 15, 2020
Submission Date November 20, 2019
Acceptance Date April 8, 2020
Published in Issue Year 2020 Volume: 9 Issue: 2

Cite

IEEE M. S. Izgi, C. Zörer, O. Baytar, Ö. Şahin, and S. Horoz, “Etkili Aktif Karbon Destekli CdS Fotokatalizörlerin Fotokatalitik Uygulamaları”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 2, pp. 662–670, 2020, doi: 10.17798/bitlisfen.642608.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS