Research Article
BibTex RIS Cite

Fluorescent Copper Phosphate Nanoflowers: A Novel Toxicity Investigation Study Based On Tenebrio Molitor Linnaeus, 1758 (Coleoptera: Tenebrionidae) Larvae

Year 2020, Volume: 9 Issue: 3, 975 - 984, 26.09.2020
https://doi.org/10.17798/bitlisfen.597483

Abstract

Organic-inorganic hybrid nanoflowers with commercialization
potential are the novel materials and are widely used in many experimental
applications, recently. However their potential toxicity values of these
nanoflowers are still unknown. In this study, fluorescent copper phosphate
nanoflowers (FCPnfs) were first synthesized to constructed via
organic-inorganic hybrid nanoflower synthesis method at Science Technology
Application and Research Center Laboratory of Nevsehir Haci Bektas Veli University
in 2018. The morphological features of FCPnfs (acridine orange amount, shape, size)
were analyzed. The results showed that different amount of acridine orange
caused different morphology and the organic component were homogeneously
distributed inside the nanoflowers. These materials were characterized by SEM,
EDX, XRD, and FTIR techniques. The toxic effects of the as-prepared FCPnfs were
investigated in Tenebrio molitor Linnaeus,
1758 (Coleoptera: Tenebrionidae) larvae compared to pure copper
phosphate nanoflowers (CPnfs) at Plant and Animal Production Department
Laboratory of Nevsehir Haci Bektas Veli University, Avanos Vocational School in
2018. Nanoflowers were force feed to larvae at the different doses of 0.001,
0.005, 0.010, 0.025, 0.050, 0.100 mg/10μl. According to probit assay, LC50
and LC99 values of FCPnfs were found 0.490 and 0.145 mg/10μl, respectively.
On the other hand, LC50 and LC99 values of CPnfs were
detected 0.066 and 0.172 mg/10μl, respectively. It was found that the insect
exhibited slightly more resistance to CPnfs than FCPnfs when compared to both
chemical toxic values. These new findings will be offer a new insight into how
to design new materials in industrial uses.

References

  • 1] Altinkaynak C., Tavlasoglu S., Özdemir N., Ocsoy I. 2016. A New Generation Approach In Enzyme Immobilization: Organic-İnorganic Hybrid Nanoflowers With Enhanced Catalytic Activity And Stability, Enzyme Microb. Technol., 93–94:105–12. [2] Wang R., Zhang Y., Lu D., Ge J., Liu Z., Zare R.N. 2013. Functional Protein-Organic/Inorganic Hybrid Nanomaterials, Wiley Interdiscip Rev. Nanomed Nanobiotechnol, 5(4):320–8. [3] Lee S., W., Cheon S., A., Kim M., I., Park T. J. 2015. Organic-Inorganic Hybrid Nanoflowers:Types, Characteristics, And Future Prospects, J. Nanobiotechnology, 13:54. [4] He X., Chen L., He Q., Xiao H., Zhou X., Ji H. 2017. Self-Assembled Metalloporphyrins–Inorganic Hybrid Flowers And Their Application To Efficient Epoxidation Of Olefins, Journal of Chemical Technology & Biotechnology, 92(10):2594–605. [5] Ge J., Lei J., Zare R.N. 2012. Protein-Inorganic Hybrid Nanoflowers, Nat. Nanotechnol, 7(7):428–32. [6] Yu Y., Fei X., Tian J., Xu L., Wang X., Wang Y. 2015. Self-Assembled Enzyme-Inorganic Hybrid Nanoflowers And Their Application To Enzyme Purification, Colloids Surf B Biointerfaces, 130:299–304. [7] Jing M., Fei X., Ren W., Tian J., Zhi H., Xu L., et al. 2017. Self-Assembled Hybrid Nanomaterials With Alkaline Protease And A Variety Of Metal Ions, RSC Advances, 7(76):48360–7. [8] Nadar S.S., Gawas S.D., Rathod V.K. 2016. Self-Assembled Organic-Inorganic Hybrid Glucoamylase Nanoflowers With Enhanced Activity And Stability, International Journal of Biological Macromolecules, 92:660–9. [9] Altinkaynak C., Tavlasoglu S., Kalin R., Sadeghian N., Ozdemir H., Ocsoy I., et al. 2017. A Hierarchical Assembly Of Flower-Like Hybrid Turkish Black Radish Peroxidase-Cu2+ Nanobiocatalyst And Its Effective Use In Dye Decolorization, Chemosphere, 182:122–8. [10] Ildiz N., Baldemir A., Altinkaynak C., Özdemir N., Yilmaz V., Ocsoy I. 2017. Self Assembled Snowball-Like Hybrid Nanostructures Comprising Viburnum Opulus L. Extract And Metal İons For Antimicrobial And Catalytic Applications, Enzyme and Microbial Technology, 102:60–6. [11] Altinkaynak C., Kocazorbaz E., Özdemir N., Zihnioglu F. 2018. Egg White Hybrid Nanoflower (EW-Hnf) With Biomimetic Polyphenol Oxidase Reactivity: Synthesis, Characterization And Potential Use İn Decolorization Of Synthetic Dyes, Int. J. Biol. Macromol, 109:205–11.[12] Kim K.H., Jeong J-M., Lee S.J., Choi B.G., Lee K.G. 2016. Protein-Directed Assembly Of Cobalt Phosphate Hybrid Nanoflowers, J. Colloid Interface Sci., 484:44–50. [13] Zhang Z., Zhang Y., He L., Yang Y., Liu S., Wang M., et al. 2015. A Feasible Synthesis Of Mn3(PO4)2@BSA Nanoflowers And Its Application As The Support Nanomaterial For Pt Catalyst, Journal of Power Sources, 284:170–7. [14] Zhang B., Li P., Zhang H., Wang H., Li X., Tian L., et al. 2016. Preparation Of Lipase/Zn3(PO4)2 Hybrid Nanoflower And Its Catalytic Performance As An Immobilized Enzyme, Chemical Engineering Journal, 291:287–97.[15] Wang X., Shi J., Li Z., Zhang S., Wu H., Jiang Z., Yang C., Tian C. 2014. Facile One-Pot Preparation of Chitosan/Calcium Pyrophosphate Hybrid Microflowers, ACS Applied Materials & Interfaces (ACS Publications), 6(16):14522-14532. [16] Jiao J., Xin X., Wang X., Xie Z., Xia C., Pan W. 2017. Self-Assembly Of Biosurfactant–Inorganic Hybrid Nanoflowers As Efficient Catalysts For Degradation Of Cationic Dyes, RSC Advances, 7(69):43474–82. [17] Li J., Schiavo S., Xiangli D., Rametta G., Miglietta M.L., Oliviero M., et al. 2018. Early Ecotoxic Effects Of Zno Nanoparticle Chronic Exposure In Mytilus Galloprovincialis Revealed By Transcription Of Apoptosis And Antioxidant-Related Genes. Ecotoxicology, 27(3):369–84. [18] Gebel T. 2012. Small Difference In Carcinogenic Potency Between GBP Nanomaterials And GBP Micromaterials. Arch. Toxicol, 86(7):995–1007. [19] Sun X., Chen B., Bin Xia N., Han Q., Zhu L., Qu K. 2017. Are CuO Nanoparticles Effects On Hemocytes Of The Marine Scallop (Chlamys Farreri) Caused By Particles And/Or Corresponding Released Ions?, Ecotoxicol Environ. Saf., 139:65–72. [20] Adam N., Vakurov A., Knapen D., Blust R. 2015. The Chronic Toxicity Of CuO Nanoparticles And Copper Salt To Daphnia Magna, J. Hazard Mater., 283:416–22. [21] Hoseini S.M., Hedayati A., Taheri Mirghaed A., Ghelichpour M. 2016. Toxic Effects Of Copper Sulfate And Copper Nanoparticles On Minerals, Enzymes, Thyroid Hormones And Protein Fractions Of Plasma And Histopathology İn Common Carp Cyprinus Carpio, Exp. Toxicol Pathol., 68(9):493–503. [22] Rajput V., Minkina T., Fedorenko A., Sushkova S., Mandzhieva S., Lysenko V., et al. 2018. Toxicity Of Copper Oxide Nanoparticles On Spring Barley (Hordeum Sativum Distichum), Science of The Total Environment, 645:1103–13. [23] Braz-Mota S., Campos D.F., MacCormack T.J., Duarte R.M., Val A.L., Almeida-Val V.M.F. 2018. Mechanisms Of Toxic Action Of Copper And Copper Nanoparticles In Two Amazon Fish Species: Dwarf Cichlid (Apistogramma Agassizii) And Cardinal Tetra (Paracheirodon Axelrodi), Sci. Total Environ., 630:1168–80. [24] Collins L. 2012. Toxicity of Moist Snuff and Impact on Various Stages of Darkling Beetles, Biology and Biotechnology, 7.[25] Ramarao N., Nielsen-Leroux C., Lereclus D. 2012. The İnsect Galleria Mellonella As A Powerful İnfection Model To İnvestigate Bacterial Pathogenesis, J. Vis. Exp.,(70):4392. [26] Dere B., Altuntaş H., Nurullahoğlu Z.U. 2015. Insectıcıdal And Oxıdatıve Effects Of Azadırachtın On The Model Organısm Galleria Mellonella L. (Lepıdoptera: Pyralıdae), Arch. Insect. Biochem Physiol, 89(3):138–52. [27] Manente S., De Pieri S., Iero A., Rigo C., Bragadin M. 2008 A Comparison Between The Responses Of Neutral Red And Acridine Orange: Acridine Orange Should Be Preferential And Alternative To Neutral Red As A Dye For The Monitoring Of Contaminants By Means Of Biological Sensors, Anal. Biochem., 383(2):316–9. [28] Altuntaş H., Duman E., Şanal Demirci S.N., Ergin E. 2016. Toxicological And Physiological Effects Of Ethephon On The Model Organism, Galleria Mellonella L. 1758 (Lepidoptera: Pyralidae), Turkish Journal of Entomology, 40(4). [29] Nishi M., Hiruma H., Sasamoto H., Iwamura M., Isonaka R., Baba S. 2012. Cytocidal Effects Of Acridine Orange Evoked By Blue Light On Human Bladder Cancer Cells, Kitasato Med. J., 42: 128-137.[30] Ali T.H., Abed A.A., Ellah A.A. 2016. Determination Of The Lethal Concentration 50% (Lc50) Of Cadmium Chloride In Mosquito Fish Gambusia Holbrooki, Tikrit Journal of Pure Science, 21:1.[31] Calabrese E.J., Baldwin L.A. 2001. U-Shaped Dose-Responses In Biology, Toxicology And Public Health, Annu. Rev. Public Health, 22:15–33. [32] Carmona E.R., Inostroza-Blancheteau C., Obando V., Rubio L., Marcos R. 2015. Genotoxicity Of Copper Oxide Nanoparticles In Drosophila Melanogaster, Mutat. Res. Genet. Toxicol Environ. Mutagen, 791:1–11. [33] Baeg E., Sooklert K., Sereemaspun A. 2018. Copper Oxide Nanoparticles Cause a Dose-Dependent Toxicity via Inducing Reactive Oxygen Species In Drosophila, Nanomaterials (Basel), 8:10. [34] Sezer Tunçsoy B., Ozalp P. 2016. Toxic Effects Of Copper Oxide Nanoparticles In Midgut And Fat Body Of Galleria Mellonella (Lepidoptera: Pyralidae), Toxicology Letters, 258:270.

Tenebrio molitor larvasında gerçekleştirilen yeni bir toksik araştırma: Floresan bakır fosfat nano çiçekler

Year 2020, Volume: 9 Issue: 3, 975 - 984, 26.09.2020
https://doi.org/10.17798/bitlisfen.597483

Abstract

Son
zamanlarda birçok deneysel uygulamada yaygın olarak kullanılan
organik-inorganik hibrit nano çiçekler ticarileşme potansiyeline sahip yeni
malzemelerdir. Ancak bu nano çiçeklerin toksik etkileri hala bilinmemektedir.
Bu çalışmada, ilk defa organik-inorganik hibrit nano çiçek sentez metodu
kullanılarak floresan bakır fosfat nano çiçekler (FCPnfs) 2018 yılında Nevşehir
Hacı Bektaş Veli Üniversitesi, Bilim Teknoloji Araştırma ve Uygulama Merkezi
laboratuvarında sentezlendi. FCPnfs'in morfolojik özellikleri (akridin orange
miktarı, şekli, boyutu) analiz edildi. Sonuçlar, farklı miktarda akridin orange’ın
farklı morfolojiye neden olduğu ve organik bileşenin nano çiçeklerin içinde
homojen bir şekilde dağıldığını gösterdi. Sentezlenen malzemelerin
karakterizasyonları SEM, EDX, XRD ve FTIR teknikleri ile gerçekleştirildi. Model
organizma olarak seçilen Tenebrio molitor
Linnaeus, 1758 (Coleoptera: Tenebrionidae)
larvalarında sentezlenen FCPnfs'lerin toksik etkileri, saf bakır fosfat nano
çiçekleriyle (CPnfs) karşılaştırmalı olarak 2018 yılında Nevşehir Hacı Bektaş
Veli Üniversitesi, Avanos Meslek Yüksekokulu, Bitkisel ve Hayvansal Üretim
Laboratuvarı’nda incelendi. Larvalara nano çiçekler, 0.001, 0.005, 0.010,
0.025, 0.050, 0.100 mg/10µl olacak şekilde farklı dozlarda zorla besleme
yapıldı. Yapılan probit analizine göre, FCPnfs'in LC50 değeri 0.490
mg/10µl iken LC99 değeri 0.145 mg/10µl bulundu. Öte yandan,
CPnfs'nin LC50 değeri 0.066 mg/10µl iken LC99 değeri 0.172
mg/10µl bulundu. Elde edilen toksik veriler değerlendirildiğinde; Tenebrio molitor larvalarının CPnfs'ye
FCPnfs'den biraz daha fazla direnç gösterdiği bulundu. Bu bulgular, endüstriyel
kullanımlarda yeni malzemelerin nasıl tasarlanacağı hakkında yeni bir bakış
açısı kazandıracaktır.

References

  • 1] Altinkaynak C., Tavlasoglu S., Özdemir N., Ocsoy I. 2016. A New Generation Approach In Enzyme Immobilization: Organic-İnorganic Hybrid Nanoflowers With Enhanced Catalytic Activity And Stability, Enzyme Microb. Technol., 93–94:105–12. [2] Wang R., Zhang Y., Lu D., Ge J., Liu Z., Zare R.N. 2013. Functional Protein-Organic/Inorganic Hybrid Nanomaterials, Wiley Interdiscip Rev. Nanomed Nanobiotechnol, 5(4):320–8. [3] Lee S., W., Cheon S., A., Kim M., I., Park T. J. 2015. Organic-Inorganic Hybrid Nanoflowers:Types, Characteristics, And Future Prospects, J. Nanobiotechnology, 13:54. [4] He X., Chen L., He Q., Xiao H., Zhou X., Ji H. 2017. Self-Assembled Metalloporphyrins–Inorganic Hybrid Flowers And Their Application To Efficient Epoxidation Of Olefins, Journal of Chemical Technology & Biotechnology, 92(10):2594–605. [5] Ge J., Lei J., Zare R.N. 2012. Protein-Inorganic Hybrid Nanoflowers, Nat. Nanotechnol, 7(7):428–32. [6] Yu Y., Fei X., Tian J., Xu L., Wang X., Wang Y. 2015. Self-Assembled Enzyme-Inorganic Hybrid Nanoflowers And Their Application To Enzyme Purification, Colloids Surf B Biointerfaces, 130:299–304. [7] Jing M., Fei X., Ren W., Tian J., Zhi H., Xu L., et al. 2017. Self-Assembled Hybrid Nanomaterials With Alkaline Protease And A Variety Of Metal Ions, RSC Advances, 7(76):48360–7. [8] Nadar S.S., Gawas S.D., Rathod V.K. 2016. Self-Assembled Organic-Inorganic Hybrid Glucoamylase Nanoflowers With Enhanced Activity And Stability, International Journal of Biological Macromolecules, 92:660–9. [9] Altinkaynak C., Tavlasoglu S., Kalin R., Sadeghian N., Ozdemir H., Ocsoy I., et al. 2017. A Hierarchical Assembly Of Flower-Like Hybrid Turkish Black Radish Peroxidase-Cu2+ Nanobiocatalyst And Its Effective Use In Dye Decolorization, Chemosphere, 182:122–8. [10] Ildiz N., Baldemir A., Altinkaynak C., Özdemir N., Yilmaz V., Ocsoy I. 2017. Self Assembled Snowball-Like Hybrid Nanostructures Comprising Viburnum Opulus L. Extract And Metal İons For Antimicrobial And Catalytic Applications, Enzyme and Microbial Technology, 102:60–6. [11] Altinkaynak C., Kocazorbaz E., Özdemir N., Zihnioglu F. 2018. Egg White Hybrid Nanoflower (EW-Hnf) With Biomimetic Polyphenol Oxidase Reactivity: Synthesis, Characterization And Potential Use İn Decolorization Of Synthetic Dyes, Int. J. Biol. Macromol, 109:205–11.[12] Kim K.H., Jeong J-M., Lee S.J., Choi B.G., Lee K.G. 2016. Protein-Directed Assembly Of Cobalt Phosphate Hybrid Nanoflowers, J. Colloid Interface Sci., 484:44–50. [13] Zhang Z., Zhang Y., He L., Yang Y., Liu S., Wang M., et al. 2015. A Feasible Synthesis Of Mn3(PO4)2@BSA Nanoflowers And Its Application As The Support Nanomaterial For Pt Catalyst, Journal of Power Sources, 284:170–7. [14] Zhang B., Li P., Zhang H., Wang H., Li X., Tian L., et al. 2016. Preparation Of Lipase/Zn3(PO4)2 Hybrid Nanoflower And Its Catalytic Performance As An Immobilized Enzyme, Chemical Engineering Journal, 291:287–97.[15] Wang X., Shi J., Li Z., Zhang S., Wu H., Jiang Z., Yang C., Tian C. 2014. Facile One-Pot Preparation of Chitosan/Calcium Pyrophosphate Hybrid Microflowers, ACS Applied Materials & Interfaces (ACS Publications), 6(16):14522-14532. [16] Jiao J., Xin X., Wang X., Xie Z., Xia C., Pan W. 2017. Self-Assembly Of Biosurfactant–Inorganic Hybrid Nanoflowers As Efficient Catalysts For Degradation Of Cationic Dyes, RSC Advances, 7(69):43474–82. [17] Li J., Schiavo S., Xiangli D., Rametta G., Miglietta M.L., Oliviero M., et al. 2018. Early Ecotoxic Effects Of Zno Nanoparticle Chronic Exposure In Mytilus Galloprovincialis Revealed By Transcription Of Apoptosis And Antioxidant-Related Genes. Ecotoxicology, 27(3):369–84. [18] Gebel T. 2012. Small Difference In Carcinogenic Potency Between GBP Nanomaterials And GBP Micromaterials. Arch. Toxicol, 86(7):995–1007. [19] Sun X., Chen B., Bin Xia N., Han Q., Zhu L., Qu K. 2017. Are CuO Nanoparticles Effects On Hemocytes Of The Marine Scallop (Chlamys Farreri) Caused By Particles And/Or Corresponding Released Ions?, Ecotoxicol Environ. Saf., 139:65–72. [20] Adam N., Vakurov A., Knapen D., Blust R. 2015. The Chronic Toxicity Of CuO Nanoparticles And Copper Salt To Daphnia Magna, J. Hazard Mater., 283:416–22. [21] Hoseini S.M., Hedayati A., Taheri Mirghaed A., Ghelichpour M. 2016. Toxic Effects Of Copper Sulfate And Copper Nanoparticles On Minerals, Enzymes, Thyroid Hormones And Protein Fractions Of Plasma And Histopathology İn Common Carp Cyprinus Carpio, Exp. Toxicol Pathol., 68(9):493–503. [22] Rajput V., Minkina T., Fedorenko A., Sushkova S., Mandzhieva S., Lysenko V., et al. 2018. Toxicity Of Copper Oxide Nanoparticles On Spring Barley (Hordeum Sativum Distichum), Science of The Total Environment, 645:1103–13. [23] Braz-Mota S., Campos D.F., MacCormack T.J., Duarte R.M., Val A.L., Almeida-Val V.M.F. 2018. Mechanisms Of Toxic Action Of Copper And Copper Nanoparticles In Two Amazon Fish Species: Dwarf Cichlid (Apistogramma Agassizii) And Cardinal Tetra (Paracheirodon Axelrodi), Sci. Total Environ., 630:1168–80. [24] Collins L. 2012. Toxicity of Moist Snuff and Impact on Various Stages of Darkling Beetles, Biology and Biotechnology, 7.[25] Ramarao N., Nielsen-Leroux C., Lereclus D. 2012. The İnsect Galleria Mellonella As A Powerful İnfection Model To İnvestigate Bacterial Pathogenesis, J. Vis. Exp.,(70):4392. [26] Dere B., Altuntaş H., Nurullahoğlu Z.U. 2015. Insectıcıdal And Oxıdatıve Effects Of Azadırachtın On The Model Organısm Galleria Mellonella L. (Lepıdoptera: Pyralıdae), Arch. Insect. Biochem Physiol, 89(3):138–52. [27] Manente S., De Pieri S., Iero A., Rigo C., Bragadin M. 2008 A Comparison Between The Responses Of Neutral Red And Acridine Orange: Acridine Orange Should Be Preferential And Alternative To Neutral Red As A Dye For The Monitoring Of Contaminants By Means Of Biological Sensors, Anal. Biochem., 383(2):316–9. [28] Altuntaş H., Duman E., Şanal Demirci S.N., Ergin E. 2016. Toxicological And Physiological Effects Of Ethephon On The Model Organism, Galleria Mellonella L. 1758 (Lepidoptera: Pyralidae), Turkish Journal of Entomology, 40(4). [29] Nishi M., Hiruma H., Sasamoto H., Iwamura M., Isonaka R., Baba S. 2012. Cytocidal Effects Of Acridine Orange Evoked By Blue Light On Human Bladder Cancer Cells, Kitasato Med. J., 42: 128-137.[30] Ali T.H., Abed A.A., Ellah A.A. 2016. Determination Of The Lethal Concentration 50% (Lc50) Of Cadmium Chloride In Mosquito Fish Gambusia Holbrooki, Tikrit Journal of Pure Science, 21:1.[31] Calabrese E.J., Baldwin L.A. 2001. U-Shaped Dose-Responses In Biology, Toxicology And Public Health, Annu. Rev. Public Health, 22:15–33. [32] Carmona E.R., Inostroza-Blancheteau C., Obando V., Rubio L., Marcos R. 2015. Genotoxicity Of Copper Oxide Nanoparticles In Drosophila Melanogaster, Mutat. Res. Genet. Toxicol Environ. Mutagen, 791:1–11. [33] Baeg E., Sooklert K., Sereemaspun A. 2018. Copper Oxide Nanoparticles Cause a Dose-Dependent Toxicity via Inducing Reactive Oxygen Species In Drosophila, Nanomaterials (Basel), 8:10. [34] Sezer Tunçsoy B., Ozalp P. 2016. Toxic Effects Of Copper Oxide Nanoparticles In Midgut And Fat Body Of Galleria Mellonella (Lepidoptera: Pyralidae), Toxicology Letters, 258:270.
There are 1 citations in total.

Details

Primary Language English
Journal Section Araştırma Makalesi
Authors

Ata Eskin 0000-0002-7953-654X

Cevahir Altınkaynak 0000-0003-0082-8521

Merve Türk This is me 0000-0003-0833-3224

Nalan Özdemir 0000-0002-8930-5198

Publication Date September 26, 2020
Submission Date July 26, 2019
Acceptance Date July 14, 2020
Published in Issue Year 2020 Volume: 9 Issue: 3

Cite

IEEE A. Eskin, C. Altınkaynak, M. Türk, and N. Özdemir, “Fluorescent Copper Phosphate Nanoflowers: A Novel Toxicity Investigation Study Based On Tenebrio Molitor Linnaeus, 1758 (Coleoptera: Tenebrionidae) Larvae”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 3, pp. 975–984, 2020, doi: 10.17798/bitlisfen.597483.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS