Research Article
BibTex RIS Cite

Polistren kapı yalıtkanı ile pentasen fototransistör imalatı

Year 2020, Volume: 9 Issue: 3, 1031 - 1039, 26.09.2020
https://doi.org/10.17798/bitlisfen.656800

Abstract

Bu çalışmada, polistren kapı dielektrikli üst kontak pentasen tabanlı fototransistör imalatı yapılmıştır. Polistren yalıtkanının ve pentasen aktif tabakanın yüzey morfolojisini analiz etmek için, taramalı elektron mikroskobu (SEM) kullanılmıştır. Pentasen bazlı fototransistörlerin elektriksel karakterizasyonu ve aydınlatmanın çıkış karakteristikleri üzerindeki etkisi araştırılmıştır. Transistörden elde edilen mobilite değeri ve on/off oranı sırasıyla 5×10-3 cm2/V ve ~ 102'dir. Akaç akımının artan aydınlatma yoğunluğuyla birlikte artması, ışığın ek bir terminal olarak görev yaptığını gösterir. Ayrıca, imal edilmiş bu transistör, aydınlatmaya tepki vermesi nedeniyle bir fototransistör olarak görev görür.

References

  • 1. Drury, C. J., Mutsaers, C. M. J., Hart, C. M., Matters, M., & De Leeuw, D. M. (1998). Low-cost all-polymer integrated circuits. Applied Physics Letters, 73(1), 108-110.
  • 2. Huitema, H. E. A., Gelinck, G. H., van der Putten, J. B. P., Kuijk, K. E., Hart, C. M., Cantatore, E., & de Leeuw, D. M. (2002). Active‐Matrix Displays Driven by Solution‐Processed Polymeric Transistors. Advanced Materials, 14(17), 1201-1204.
  • 3. Tsumura, A., Koezuka, H., & Ando, T. J. A. P. L. (1986). Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters, 49(18), 1210-1212.
  • 4. Lin, Y. Y., Gundlach, D. J., Nelson, S. F., & Jackson, T. N. (1997). Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Letters, 18(12), 606-608.
  • 5. Ren, Q., Xu, Q., Xia, H., Luo, X., Zhao, F., Sun, L., ... & Zhao, Z. (2017). High performance photoresponsive field-effect transistors based on MoS2/pentacene heterojunction. Organic Electronics, 51, 142-148.
  • 6. Virkar, A. A., Mannsfeld, S., Bao, Z., & Stingelin, N. (2010). Organic semiconductor growth and morphology considerations for organic thin‐film transistors. Advanced Materials, 22(34), 3857-3875.
  • 7. Lee, S., Jo, G., Kang, S. J., Wang, G., Choe, M., Park, W., ... & Lee, T. (2011). Enhanced Charge Injection in Pentacene Field‐Effect Transistors with Graphene Electrodes. Advanced Materials, 23(1), 100-105.
  • 8. Ruzgar, S., & Caglar, M. (2017). Use of bilayer gate insulator to increase the electrical performance of pentacene based transistor. Synthetic Metals, 232, 46-51.
  • 9. Klauk, H., Schmid, G., Radlik, W., Weber, W., Zhou, L., Sheraw, C. D., ... & Jackson, T. N. (2003). Contact resistance in organic thin film transistors. Solid-State Electronics, 47(2), 297-301.
  • 10. Liang, Y., Dong, G., Hu, Y., Wang, L., & Qiu, Y. (2005). Low-voltage pentacene thin-film transistors with Ta 2 O 5 gate insulators and their reversible light-induced threshold voltage shift. Applied Physics Letters, 86(13), 132101.
  • 11. Knipp, D., Street, R. A., & Völkel, A. R. (2003). Morphology and electronic transport of polycrystalline pentacene thin-film transistors. Applied Physics Letters, 82(22), 3907-3909.
  • 12. Hiller, D., Zierold, R., Bachmann, J., Alexe, M., Yang, Y., Gerlach, J. W., ... & Hilmer, H. (2010). Low temperature silicon dioxide by thermal atomic layer deposition: Investigation of material properties. Journal of Applied Physics, 107(6), 064314.
  • 13. Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W., & Weber, W. (2002). High-mobility polymer gate dielectric pentacene thin film transistors. Journal of Applied Physics, 92(9), 5259-5263.
  • 14. Wang, Y., Acton, O., Ting, G., Weidner, T., Shamberge, P. J., Ma, H., ... & Jen, A. K. Y. (2010). Effect of the phenyl ring orientation in the polystyrene buffer layer on the performance of pentacene thin-film transistors. Organic Electronics, 11(6), 1066-1073.
  • 15. Lee, S. W., Kim, D. W., Shin, H., Choi, J. S., Bae, J. H., Zhang, X., & Park, J. (2014). Effects of Polystyrene Gate Dielectrics with Various Molecular Weights on Electrical Characteristics of Pentacene Thin-Film Transistors. Molecular Crystals and Liquid Crystals, 598(1), 129-134.
  • 16. Ruzgar, S., & Caglar, M. (2015). Copper (II) Phthalocyanine Based Field Effect Transistors with Organic/Inorganic Bilayer Gate Dielectric. Journal of Nanoelectronics and Optoelectronics, 10(6), 717-722.
  • 17. Jeong, H. S., Bae, J. H., Lee, H., Ndikumana, J., & Park, J. (2018). Structural Modification of Organic Thin-Film Transistors for Photosensor Application. Journal of the Korean Physical Society, 72(10), 1254-1263.
  • 18. Zhang, X., Park, G. T., Choi, J. S., Kwon, J. H., Bae, J. H., & Park, J. (2014). Effects of molecular weights of a polymeric insulator on the electrical properties of pentacene thin-film transistors. Japanese Journal of Applied Physics, 53(3), 031601.
  • 19. Zhang, Q., Kale, T. S., Plunkett, E., Shi, W., Kirby, B. J., Reich, D. H., & Katz, H. E. (2018). Highly Contrasting Static Charging and Bias Stress Effects in Pentacene Transistors with Polystyrene Heterostructures Incorporating Oxidizable N, N′-Bis (4-methoxyphenyl) aniline Side Chains as Gate Dielectrics. Macromolecules, 51(15), 6011-6020.
  • 20. Sun, X., Di, C. A., & Liu, Y. (2010). Engineering of the dielectric–semiconductor interface in organic field-effect transistors. Journal of Materials Chemistry, 20(13), 2599-2611.
  • 21. Park, J. H., Kang, C. H., Kim, Y. J., Lee, Y. S., & Choi, J. S. (2004). Characteristics of pentacene-based thin-film transistors. Materials Science and Engineering: C, 24(1-2), 27-29.
  • 22. Kim, C., Facchetti, A., & Marks, T. J. (2007). Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance. Science, 318(5847), 76-80.
  • 23. Yu, A., Qi, Q., Jiang, P., & Jiang, C. (2009). The effects of hydroxyl-free polystyrene buffer layer on electrical performance of pentacene-based thin-film transistors with high-k oxide gate dielectric. Synthetic Metals, 159(14), 1467-1470.
  • 24. Ruzgar, S., Caglar, Y., Ilican, S., & Caglar, M. (2017). Modification of gate dielectric on the performance of copper (II) phthalocyanine based on organic field effect transistors. Optik-International Journal for Light and Electron Optics, 130, 61-67.
  • 25. Romero, M. A., Martinez, M. A. G., & Herczfeld, P. R. (1996). An analytical model for the photodetection mechanisms in high-electron mobility transistors. IEEE transactions on microwave theory and techniques, 44(12), 2279-2287.
  • 26. Yang, D., Zhang, L., Yang, S. Y., & Zou, B. S. (2013). Influence of the dielectric PMMA layer on the detectivity of pentacene-based photodetector with field-effect transistor configuration in visible region. IEEE Photonics Journal, 5(6), 6801709-6801709.
  • 27. Buscema, M., Groenendijk, D. J., Blanter, S. I., Steele, G. A., Van Der Zant, H. S., & Castellanos-Gomez, A. (2014). Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano letters, 14(6), 3347-3352.
  • 28. Yu, X., Shen, Y., Liu, T., Wu, T. T., & Wang, Q. J. (2015). Photocurrent generation in lateral graphene pn junction created by electron-beam irradiation. Scientific reports, 5, 12014.
  • 29. Kazim, S., Ali, V., Zulfequar, M., Haq, M. M., & Husain, M. (2007). Electrical transport properties of poly [2-methoxy-5-(2′-ethyl hexyloxy)-1, 4-phenylene vinylene] thin films doped with acridine orange dye. Physica B: Condensed Matter, 393(1-2), 310-315.
  • 30. Marcano, G., Zanatta, A. R., & Chambouleyron, I. (1994). Photoconductivity of intrinsic and nitrogen‐doped hydrogenated amorphous germanium thin films. Journal of applied physics, 75(9), 4662-4667.
  • 31. Kwon, J. H., Chung, M. H., Oh, T. Y., Bae, H. S., Park, J. H., Ju, B. K., & Yakuphanoglu, F. (2009). High-mobility pentacene thin-film phototransistor with poly-4-vinylphenol gate dielectric. Sensors and Actuators A: Physical, 156(2), 312-316.
  • 32. Lee, D. H., Kawamura, K. I., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., & Hosono, H. (2010). Steady-state photoconductivity of amorphous In–Ga–Zn–O. Thin solid films, 518(11), 3000-3003.
  • 33. Yao, B., Lv, W., Chen, D., Fan, G., Zhou, M., & Peng, Y. (2012). Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/drain electrodes. Applied Physics Letters, 101(16), 163301.
  • 34. Noh, Y. Y., & Kim, D. Y. (2007). Organic phototransistor based on pentacene as an efficient red light sensor. Solid-state electronics, 51(7), 1052-1055.
  • 35. Kim, Y. H., Han, J. I., Han, M. K., Anthony, J. E., Park, J., & Park, S. K. (2010). Highly light-responsive ink-jet printed 6, 13-bis (triisopropylsilylethynyl) pentacene phototransistors with suspended top-contact structure. Organic Electronics, 11(9), 1529-1533.
  • 36. Kim, W. J., Koo, W. H., Jo, S. J., Kim, C. S., Baik, H. K., Hwang, D. K., ... & Im, S. (2006). Ultraviolet-enduring performance of flexible pentacene TFTs with SnO2 encapsulation films. Electrochemical and solid-state letters, 9(7), G251-G253.

The Electrical Properties of Fabricated Pentacene Based Phototransistor with Polystyrene Gate Insulator

Year 2020, Volume: 9 Issue: 3, 1031 - 1039, 26.09.2020
https://doi.org/10.17798/bitlisfen.656800

Abstract

In this study, the fabrication of top contact pentacene based phototransistor having polystyrene gate dielectric has been carried out. To analyze the surface morpholgy of polystyrene insulator and pentacene active layer, scanning electron microscopy (SEM) has been used. The electrical characterization of pentacene based phototransistor and also the effect of illumination on the output characteristics have been investigated. The obtained mobility value and on/off ratio of the transistor are 5×10-3 cm2/Vs and ~102, respectively. The increase of the drain current with increasing illumination intensity indicates that the light acts as an additional terminal. Also, this fabricated device behaves as a phototransistor because of its reaction to the illumination.

References

  • 1. Drury, C. J., Mutsaers, C. M. J., Hart, C. M., Matters, M., & De Leeuw, D. M. (1998). Low-cost all-polymer integrated circuits. Applied Physics Letters, 73(1), 108-110.
  • 2. Huitema, H. E. A., Gelinck, G. H., van der Putten, J. B. P., Kuijk, K. E., Hart, C. M., Cantatore, E., & de Leeuw, D. M. (2002). Active‐Matrix Displays Driven by Solution‐Processed Polymeric Transistors. Advanced Materials, 14(17), 1201-1204.
  • 3. Tsumura, A., Koezuka, H., & Ando, T. J. A. P. L. (1986). Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters, 49(18), 1210-1212.
  • 4. Lin, Y. Y., Gundlach, D. J., Nelson, S. F., & Jackson, T. N. (1997). Stacked pentacene layer organic thin-film transistors with improved characteristics. IEEE Electron Device Letters, 18(12), 606-608.
  • 5. Ren, Q., Xu, Q., Xia, H., Luo, X., Zhao, F., Sun, L., ... & Zhao, Z. (2017). High performance photoresponsive field-effect transistors based on MoS2/pentacene heterojunction. Organic Electronics, 51, 142-148.
  • 6. Virkar, A. A., Mannsfeld, S., Bao, Z., & Stingelin, N. (2010). Organic semiconductor growth and morphology considerations for organic thin‐film transistors. Advanced Materials, 22(34), 3857-3875.
  • 7. Lee, S., Jo, G., Kang, S. J., Wang, G., Choe, M., Park, W., ... & Lee, T. (2011). Enhanced Charge Injection in Pentacene Field‐Effect Transistors with Graphene Electrodes. Advanced Materials, 23(1), 100-105.
  • 8. Ruzgar, S., & Caglar, M. (2017). Use of bilayer gate insulator to increase the electrical performance of pentacene based transistor. Synthetic Metals, 232, 46-51.
  • 9. Klauk, H., Schmid, G., Radlik, W., Weber, W., Zhou, L., Sheraw, C. D., ... & Jackson, T. N. (2003). Contact resistance in organic thin film transistors. Solid-State Electronics, 47(2), 297-301.
  • 10. Liang, Y., Dong, G., Hu, Y., Wang, L., & Qiu, Y. (2005). Low-voltage pentacene thin-film transistors with Ta 2 O 5 gate insulators and their reversible light-induced threshold voltage shift. Applied Physics Letters, 86(13), 132101.
  • 11. Knipp, D., Street, R. A., & Völkel, A. R. (2003). Morphology and electronic transport of polycrystalline pentacene thin-film transistors. Applied Physics Letters, 82(22), 3907-3909.
  • 12. Hiller, D., Zierold, R., Bachmann, J., Alexe, M., Yang, Y., Gerlach, J. W., ... & Hilmer, H. (2010). Low temperature silicon dioxide by thermal atomic layer deposition: Investigation of material properties. Journal of Applied Physics, 107(6), 064314.
  • 13. Klauk, H., Halik, M., Zschieschang, U., Schmid, G., Radlik, W., & Weber, W. (2002). High-mobility polymer gate dielectric pentacene thin film transistors. Journal of Applied Physics, 92(9), 5259-5263.
  • 14. Wang, Y., Acton, O., Ting, G., Weidner, T., Shamberge, P. J., Ma, H., ... & Jen, A. K. Y. (2010). Effect of the phenyl ring orientation in the polystyrene buffer layer on the performance of pentacene thin-film transistors. Organic Electronics, 11(6), 1066-1073.
  • 15. Lee, S. W., Kim, D. W., Shin, H., Choi, J. S., Bae, J. H., Zhang, X., & Park, J. (2014). Effects of Polystyrene Gate Dielectrics with Various Molecular Weights on Electrical Characteristics of Pentacene Thin-Film Transistors. Molecular Crystals and Liquid Crystals, 598(1), 129-134.
  • 16. Ruzgar, S., & Caglar, M. (2015). Copper (II) Phthalocyanine Based Field Effect Transistors with Organic/Inorganic Bilayer Gate Dielectric. Journal of Nanoelectronics and Optoelectronics, 10(6), 717-722.
  • 17. Jeong, H. S., Bae, J. H., Lee, H., Ndikumana, J., & Park, J. (2018). Structural Modification of Organic Thin-Film Transistors for Photosensor Application. Journal of the Korean Physical Society, 72(10), 1254-1263.
  • 18. Zhang, X., Park, G. T., Choi, J. S., Kwon, J. H., Bae, J. H., & Park, J. (2014). Effects of molecular weights of a polymeric insulator on the electrical properties of pentacene thin-film transistors. Japanese Journal of Applied Physics, 53(3), 031601.
  • 19. Zhang, Q., Kale, T. S., Plunkett, E., Shi, W., Kirby, B. J., Reich, D. H., & Katz, H. E. (2018). Highly Contrasting Static Charging and Bias Stress Effects in Pentacene Transistors with Polystyrene Heterostructures Incorporating Oxidizable N, N′-Bis (4-methoxyphenyl) aniline Side Chains as Gate Dielectrics. Macromolecules, 51(15), 6011-6020.
  • 20. Sun, X., Di, C. A., & Liu, Y. (2010). Engineering of the dielectric–semiconductor interface in organic field-effect transistors. Journal of Materials Chemistry, 20(13), 2599-2611.
  • 21. Park, J. H., Kang, C. H., Kim, Y. J., Lee, Y. S., & Choi, J. S. (2004). Characteristics of pentacene-based thin-film transistors. Materials Science and Engineering: C, 24(1-2), 27-29.
  • 22. Kim, C., Facchetti, A., & Marks, T. J. (2007). Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance. Science, 318(5847), 76-80.
  • 23. Yu, A., Qi, Q., Jiang, P., & Jiang, C. (2009). The effects of hydroxyl-free polystyrene buffer layer on electrical performance of pentacene-based thin-film transistors with high-k oxide gate dielectric. Synthetic Metals, 159(14), 1467-1470.
  • 24. Ruzgar, S., Caglar, Y., Ilican, S., & Caglar, M. (2017). Modification of gate dielectric on the performance of copper (II) phthalocyanine based on organic field effect transistors. Optik-International Journal for Light and Electron Optics, 130, 61-67.
  • 25. Romero, M. A., Martinez, M. A. G., & Herczfeld, P. R. (1996). An analytical model for the photodetection mechanisms in high-electron mobility transistors. IEEE transactions on microwave theory and techniques, 44(12), 2279-2287.
  • 26. Yang, D., Zhang, L., Yang, S. Y., & Zou, B. S. (2013). Influence of the dielectric PMMA layer on the detectivity of pentacene-based photodetector with field-effect transistor configuration in visible region. IEEE Photonics Journal, 5(6), 6801709-6801709.
  • 27. Buscema, M., Groenendijk, D. J., Blanter, S. I., Steele, G. A., Van Der Zant, H. S., & Castellanos-Gomez, A. (2014). Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano letters, 14(6), 3347-3352.
  • 28. Yu, X., Shen, Y., Liu, T., Wu, T. T., & Wang, Q. J. (2015). Photocurrent generation in lateral graphene pn junction created by electron-beam irradiation. Scientific reports, 5, 12014.
  • 29. Kazim, S., Ali, V., Zulfequar, M., Haq, M. M., & Husain, M. (2007). Electrical transport properties of poly [2-methoxy-5-(2′-ethyl hexyloxy)-1, 4-phenylene vinylene] thin films doped with acridine orange dye. Physica B: Condensed Matter, 393(1-2), 310-315.
  • 30. Marcano, G., Zanatta, A. R., & Chambouleyron, I. (1994). Photoconductivity of intrinsic and nitrogen‐doped hydrogenated amorphous germanium thin films. Journal of applied physics, 75(9), 4662-4667.
  • 31. Kwon, J. H., Chung, M. H., Oh, T. Y., Bae, H. S., Park, J. H., Ju, B. K., & Yakuphanoglu, F. (2009). High-mobility pentacene thin-film phototransistor with poly-4-vinylphenol gate dielectric. Sensors and Actuators A: Physical, 156(2), 312-316.
  • 32. Lee, D. H., Kawamura, K. I., Nomura, K., Yanagi, H., Kamiya, T., Hirano, M., & Hosono, H. (2010). Steady-state photoconductivity of amorphous In–Ga–Zn–O. Thin solid films, 518(11), 3000-3003.
  • 33. Yao, B., Lv, W., Chen, D., Fan, G., Zhou, M., & Peng, Y. (2012). Photoresponsivity enhancement of pentacene organic phototransistors by introducing C60 buffer layer under source/drain electrodes. Applied Physics Letters, 101(16), 163301.
  • 34. Noh, Y. Y., & Kim, D. Y. (2007). Organic phototransistor based on pentacene as an efficient red light sensor. Solid-state electronics, 51(7), 1052-1055.
  • 35. Kim, Y. H., Han, J. I., Han, M. K., Anthony, J. E., Park, J., & Park, S. K. (2010). Highly light-responsive ink-jet printed 6, 13-bis (triisopropylsilylethynyl) pentacene phototransistors with suspended top-contact structure. Organic Electronics, 11(9), 1529-1533.
  • 36. Kim, W. J., Koo, W. H., Jo, S. J., Kim, C. S., Baik, H. K., Hwang, D. K., ... & Im, S. (2006). Ultraviolet-enduring performance of flexible pentacene TFTs with SnO2 encapsulation films. Electrochemical and solid-state letters, 9(7), G251-G253.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Şerif Rüzgar 0000-0002-4964-2202

Müjdat Çağlar 0000-0001-9724-7664

Publication Date September 26, 2020
Submission Date December 8, 2019
Acceptance Date June 15, 2020
Published in Issue Year 2020 Volume: 9 Issue: 3

Cite

IEEE Ş. Rüzgar and M. Çağlar, “The Electrical Properties of Fabricated Pentacene Based Phototransistor with Polystyrene Gate Insulator”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 3, pp. 1031–1039, 2020, doi: 10.17798/bitlisfen.656800.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS