Research Article
BibTex RIS Cite

Zeytin Karasuyunun Anaerobik Arıtılabilirliği ve Biyogaz Üretim Potansiyelinin Araştırılması

Year 2020, Volume: 9 Issue: 4, 1766 - 1778, 25.12.2020
https://doi.org/10.17798/bitlisfen.676940

Abstract

Zeytinyağı üretim fabrikalarında zeytin karasuyunun anaerobik olarak arıtılması hem biyogaz üretimi hem de sürdürülebilir çevre için umut verici bir yöntemdir. Bununla birlikte zeytinyağı fabrikalarının dönemsel çalışıyor olması bir dezavantaj gibi görünse de geniş zaman imkanı ile yüksek organik yüke sahip olan zeytin karasuyunun gerekli seyreltme ve baz ilavesi gibi ön işlemler ile arıtılması mümkündür. Bu çalışmada, yaklaşık 78000 mgL-1 KOİ konsantrasyonuna sahip ham zeytin karasuyu yaklaşık 1/8 oranında musluk suyu ile seyreltilerek 6.15 L aktif hacme sahip yukarı akışlı havasız çamur yataklı anaerobik reaktörde mezofilik şartlarda (36.5-37 °C) arıtılmıştır. Deneysel çalışma esnasında zeytin karasuyunun fiziksel ve kimyasal yapısından kaynaklanabilecek olumsuzlukların önüne geçerek gerekli mikroorganizma adaptasyonunun sağlanabilmesi için 39 günlük bir kesikli besleme süreci ile proses deneysel çalışmaya hazırlanmıştır. Hidrolik besleme süresinin 10 gün organik yükleme oranının 1 kg KOİ m-3gün-1 olduğu anaerobik proses 32 gün boyunca yarı sürekli olarak beslenmiştir. Zeytin karasuyunun düşük alkaliniteye sahip olması anaerobik proses için zorlayıcı olmuştur. Yaklaşık 615 mL (10000 mgL-1 KOİ ) seyreltilmiş zeytin karasuyuna 1N 12 mL NaOH ilavesi yapılarak sistem anaerobik şartlar için uygun pH aralığına (6.8-7.2) yaklaştırılmıştır. Çalışmanın sonunda %75.6 (±14.2) KOİ giderimi ile birlikte 2177 (± 279) mLgün-1 biyogaz üretiminin gerçekleştiği tespit edilmiştir. Anaerobik arıtma, seyreltilerek alkalinite takviyesi yapılmış olan zeytin karasuyundan KOİ giderimi ve biyogaz üretimi için sürdürülebilirlik açısından ve çevresel olarak dikkate alınması gereken bir prosestir.

Supporting Institution

Adıyaman Üniversitesi Bilimsel Araştırma Projeleri Birimi (ADYÜBAP)

Project Number

MÜFLAP/2017-0012

Thanks

Yazar bu çalışmayı finansal olarak destekleyen Adıyaman Üniversitesi Bilimsel Araştırma Projeleri Birimine teşekkür etmektedir (MÜFLAP/2017-0012).

References

  • Mert B.K., Yonar T., Kilic M.Y., Kestioglu K. 2010. Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes, Journal of Hazardous Materials, 174 (1-3): 122-128.
  • Tufaner F. 2019. Evaluation of COD and color removals of effluents from UASB reactor treating olive oil mill wastewater by Fenton process, Separation Science and Technology: 1-12.
  • TÜİK 2019. Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri, Zeytin Üretimi 1988-2018, http://www.tuik.gov.tr/PreTabloArama.do?metod=search&araType=vt. (Erişim Tarihi: 24.12.2019).
  • IOC 2018. International Olive Council, Market Newsletter No 126 – April 2018, 51st meeting of the Advisory Committee http://www.internationaloliveoil.org/documents/viewfile/13437-market-newsletter-april-2018. (Erişim Tarihi: 08.03.2019.
  • UZZK 2018. Ulusal Zeytin ve Zeytinyağı Konseyi, 2018-2019 Üretim Sezonu Sofralık Zeytin ve Zeytinyağı Rekoltesi Ulusal Resmi Tespit Heyeti Raporu, http://www.uzzk.org/Belgeler/TURKIYE_REKOLTE_RAPORU_2018_2019.pdf. (Erişim Tarihi: 24.12.2019.
  • Kiritsakis A., Shahidi F. 2017. Olives and Olive Oil as Functional Foods: Bioactivity, Chemistry and Processing, John Wiley & Sons, 688p,
  • García C.A., Hodaifa G. 2017. Real olive oil mill wastewater treatment by photo-Fenton system using artificial ultraviolet light lamps, Journal of Cleaner Production, 162: 743-753.
  • Bernardi B., Benalia S., Zema D., Tamburino V., Zimbalatti G. 2017. An automated medium scale prototype for anaerobic co-digestion of olive mill wastewater, Information Processing in Agriculture, 4 (4): 316-320.
  • Rocha C., Soria M., Madeira L.M. 2018. Thermodynamic analysis of olive oil mill wastewater steam reforming, Journal of the Energy Institute, 92 (5): 1599-1609.
  • De Leonardis A., Macciola V., Iorizzo M., Lombardi S.J., Lopez F., Marconi E. 2018. Effective assay for olive vinegar production from olive oil mill wastewaters, Food Chemistry, 240: 437-440.
  • Hanafi F., Assobhei O., Mountadar M. 2010. Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation, Journal of Hazardous Materials, 174 (1-3): 807-812.
  • Justino C.I., Duarte K., Loureiro F., Pereira R., Antunes S.C., Marques S.M., Gonçalves F., Rocha-Santos T.A., Freitas A.C. 2009. Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation, Journal of Hazardous Materials, 172 (2-3): 1560-1572.
  • Ibrahimoglu B., Yilmazoglu M.Z. 2018. Disposal of olive mill wastewater with DC arc plasma method, Journal of Environmental Management, 217: 727-734.
  • Turano E., Curcio S., De Paola M.G., Calabrò V., Iorio G. 2002. An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater, Journal of Membrane Science, 209 (2): 519-531.
  • Lucas M.S., Peres J.A. 2009. Removal of COD from olive mill wastewater by Fenton's reagent: Kinetic study, Journal of Hazardous Materials, 168 (2-3): 1253-1259.
  • Calabrò P.S., Fòlino A., Tamburino V., Zappia G., Zema D.A. 2018. Increasing the tolerance to polyphenols of the anaerobic digestion of olive wastewater through microbial adaptation, Biosystems Engineering, 172: 19-28.
  • El-Abbassi A., Kiai H., Raiti J., Hafidi A. 2014. Application of ultrafiltration for olive processing wastewaters treatment, Journal of Cleaner Production, 65: 432-438.
  • Ochando-Pulido J.M., Martinez-Ferez A. 2018. Operation setup of a nanofiltration membrane unit for purification of two-phase olives and olive oil washing wastewaters, Science of the Total Environment, 612: 758-766.
  • Ochando-Pulido J., Stoller M., Di Palma L., Martinez-Ferez A. 2014. Threshold performance of a spiral-wound reverse osmosis membrane in the treatment of olive mill effluents from two-phase and three-phase extraction processes, Chemical Engineering and Processing: Process Intensification, 83: 64-70.
  • Masi F., Bresciani R., Munz G., Lubello C. 2015. Evaporation–condensation of olive mill wastewater: Evaluation of condensate treatability through SBR and constructed Wetlands, Ecological Engineering, 80: 156-161.
  • Sklavos S., Gatidou G., Stasinakis A.S., Haralambopoulos D. 2015. Use of solar distillation for olive mill wastewater drying and recovery of polyphenolic compounds, Journal of Environmental Management, 162: 46-52.
  • Papaphilippou P.C., Yiannapas C., Politi M., Daskalaki V.M., Michael C., Kalogerakis N., Mantzavinos D., Fatta-Kassinos D. 2013. Sequential coagulation–flocculation, solvent extraction and photo-Fenton oxidation for the valorization and treatment of olive mill effluent, Chemical Engineering Journal, 224: 82-88.
  • Hodaifa G., Gallardo P.A.R., García C.A., Kowalska M., Seyedsalehi M. 2019. Chemical oxidation methods for treatment of real industrial olive oil mill wastewater, Journal of the Taiwan Institute of Chemical Engineers.
  • Chedeville O., Debacq M., Porte C. 2009. Removal of phenolic compounds present in olive mill wastewaters by ozonation, Desalination, 249 (2): 865-869.
  • González-González A., Cuadros F. 2015. Effect of aerobic pretreatment on anaerobic digestion of olive mill wastewater (OMWW): An ecoefficient treatment, Food and bioproducts processing, 95: 339-345.
  • Galliou F., Markakis N., Fountoulakis M., Nikolaidis N., Manios T. 2018. Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting, Waste Management, 75: 305-311.
  • Ubay G., Ozturk I. 1997. Anaerobic treatment of olive mill effluents, Water Science and Technology, 36 (2-3): 287-294.
  • Ochando-Pulido J., Pimentel-Moral S., Verardo V., Martinez-Ferez A. 2017. A focus on advanced physico-chemical processes for olive mill wastewater treatment, Separation and Purification Technology, 179: 161-174.
  • Sampaio M., Gonçalves M., Marques I. 2011. Anaerobic digestion challenge of raw olive mill wastewater, Bioresource Technology, 102 (23): 10810-10818.
  • Azbar N., Tutuk F., Keskin T. 2009. Biodegradation performance of an anaerobic hybrid reactor treating olive mill effluent under various organic loading rates, International Biodeterioration & Biodegradation, 63 (6): 690-698.
  • El-Gohary F., Tawfik A., Badawy M., El-Khateeb M.A. 2009. Potentials of anaerobic treatment for catalytically oxidized olive mill wastewater (OMW), Bioresource Technology, 100 (7): 2147-2154.
  • McNamara C.J., Anastasiou C.C., O'Flaherty V., Mitchell R. 2008. Bioremediation of olive mill wastewater, International Biodeterioration & Biodegradation, 61 (2): 127-134.
  • Paraskeva P., Diamadopoulos E. 2006. Technologies for olive mill wastewater (OMW) treatment: a review, Journal of Chemical Technology and Biotechnology, 81 (9): 1475-1485.
  • Mechich T., Sayadi S. 2005. Evaluating process imbalance of anaerobic digestion of olive mill wastewaters, Process Biochemistry, 40 (1): 139-145.
  • Dareioti M.A., Dokianakis S.N., Stamatelatou K., Zafiri C., Kornaros M. 2010. Exploitation of olive mill wastewater and liquid cow manure for biogas production, Waste Management, 30 (10): 1841-1848.
  • Gelegenis J., Georgakakis D., Angelidaki I., Christopoulou N., Goumenaki M. 2007. Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure, Applied Energy, 84 (6): 646-663.
  • Martinez-Garcia G., Johnson A.C., Bachmann R.T., Williams C.J., Burgoyne A., Edyvean R.G.J. 2009. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis, Journal of Hazardous Materials, 164 (2-3): 1398-1405.
  • Orive M., Cebrián M., Zufía J. 2016. Techno-economic anaerobic co-digestion feasibility study for two-phase olive oil mill pomace and pig slurry, Renewable Energy, 97: 532-540.
  • Al-Mallahi J., Furuichi T., Ishii K. 2016. Appropriate conditions for applying NaOH-pretreated two-phase olive milling waste for codigestion with food waste to enhance biogas production, Waste Management, 48: 430-439.
  • Gharsallah N., Labat M., Aloui F., Sayadi S. 1999. The effect of Phanerochaete chrysosporium pretreatment of olive mill waste waters on anaerobic digestion, Resources Conservation and Recycling, 27 (1-2): 187-192.
  • Dareioti M.A., Dokianakis S.N., Stamatelatou K., Zafiri C., Kornaros M. 2009. Biogas production from anaerobic co-digestion of agroindustrial wastewaters under mesophilic conditions in a two-stage process, Desalination, 248 (1-3): 891-906.
  • Gunay A., Karadag D. 2015. Recent developments in the anaerobic digestion of olive mill effluents, Process Biochemistry, 50 (11): 1893-1903.
  • Tufaner F. 2015. Büyükbaş hayvansal atıkların biyometanizasyon süreçlerinin iyileştirilmesinin araştırılması, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 275s, İstanbul.
  • Tufaner F. 2018. Post-treatment of effluents from UASB reactor treating industrial wastewater sediment by constructed wetland, Environmental Technology.
  • Tufaner F., Avşar Y., Gönüllü M.T. 2017. Modeling of biogas production from cattle manure with co-digestion of different organic wastes using an artificial neural network, Clean Technologies and Environmental Policy, 19 (9): 2255-2264.
  • APHA 2005. Water Environmental American Public Health Association, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA): Washington, DC, USA.
  • Rajesh Banu J., Arulazhagan P., Adish Kumar S., Kaliappan S., Lakshmi A.M. 2015. Anaerobic co-digestion of chemical-and ozone-pretreated sludge in hybrid upflow anaerobic sludge blanket reactor, Desalination and Water Treatment, 54 (12): 3269-3278.
  • Forster-Carneiro T., Perez M., Romero L.I. 2008. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste, Bioresource Technology, 99 (15): 6994-7002.
  • Lee E., Bittencourt P., Casimir L., Jimenez E., Wang M., Zhang Q., Ergas S.J. 2019. Biogas production from high solids anaerobic co-digestion of food waste, yard waste and waste activated sludge, Waste Management, 95: 432-439.
  • Pandey P.K., Ndegwa P.M., Soupir M.L., Alldredge J.R., Pitts M.J. 2011. Efficacies of inocula on the startup of anaerobic reactors treating dairy manure under stirred and unstirred conditions, Biomass & Bioenergy, 35 (7): 2705-2720.
  • Guendouz J., Buffiere P., Cacho J., Carrere M., Delgenes J.P. 2010. Dry anaerobic digestion in batch mode: Design and operation of a laboratory-scale, completely mixed reactor, Waste Management, 30 (10): 1768-1771.
  • Niaounakis M., Halvadakis C.P. 2006. Olive Processing Waste Management: Literature Review and Patent Survey, Second Edition, Elsevier Science, 498p, Amsterdam (Netherlands).
  • Yangui A., Abderrabba M. 2018. Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity, Food Chemistry, 262: 102-109.
  • Yetilmezsoy K., Sakar S. 2008. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation, Journal of Hazardous Materials, 151 (2-3): 547-558.
  • Öztürk İ. 2007. Anaerobik Arıtma ve Uygulamaları, Genişletilmiş 2 Baskı, Su Vakfı Yayınları, 480s, İstanbul.
  • Tchobanoglus G., Burton F., Stensel H.D. 2003. Wastewater engineering: Treatment and reuse,
  • Tufaner F., Avsar Y. 2019. Economic analysis of biogas production from small scale anaerobic digestion systems for cattle manure, Environmental Research and Technology, 2 (1): 6-12.
Year 2020, Volume: 9 Issue: 4, 1766 - 1778, 25.12.2020
https://doi.org/10.17798/bitlisfen.676940

Abstract

Project Number

MÜFLAP/2017-0012

References

  • Mert B.K., Yonar T., Kilic M.Y., Kestioglu K. 2010. Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes, Journal of Hazardous Materials, 174 (1-3): 122-128.
  • Tufaner F. 2019. Evaluation of COD and color removals of effluents from UASB reactor treating olive oil mill wastewater by Fenton process, Separation Science and Technology: 1-12.
  • TÜİK 2019. Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri, Zeytin Üretimi 1988-2018, http://www.tuik.gov.tr/PreTabloArama.do?metod=search&araType=vt. (Erişim Tarihi: 24.12.2019).
  • IOC 2018. International Olive Council, Market Newsletter No 126 – April 2018, 51st meeting of the Advisory Committee http://www.internationaloliveoil.org/documents/viewfile/13437-market-newsletter-april-2018. (Erişim Tarihi: 08.03.2019.
  • UZZK 2018. Ulusal Zeytin ve Zeytinyağı Konseyi, 2018-2019 Üretim Sezonu Sofralık Zeytin ve Zeytinyağı Rekoltesi Ulusal Resmi Tespit Heyeti Raporu, http://www.uzzk.org/Belgeler/TURKIYE_REKOLTE_RAPORU_2018_2019.pdf. (Erişim Tarihi: 24.12.2019.
  • Kiritsakis A., Shahidi F. 2017. Olives and Olive Oil as Functional Foods: Bioactivity, Chemistry and Processing, John Wiley & Sons, 688p,
  • García C.A., Hodaifa G. 2017. Real olive oil mill wastewater treatment by photo-Fenton system using artificial ultraviolet light lamps, Journal of Cleaner Production, 162: 743-753.
  • Bernardi B., Benalia S., Zema D., Tamburino V., Zimbalatti G. 2017. An automated medium scale prototype for anaerobic co-digestion of olive mill wastewater, Information Processing in Agriculture, 4 (4): 316-320.
  • Rocha C., Soria M., Madeira L.M. 2018. Thermodynamic analysis of olive oil mill wastewater steam reforming, Journal of the Energy Institute, 92 (5): 1599-1609.
  • De Leonardis A., Macciola V., Iorizzo M., Lombardi S.J., Lopez F., Marconi E. 2018. Effective assay for olive vinegar production from olive oil mill wastewaters, Food Chemistry, 240: 437-440.
  • Hanafi F., Assobhei O., Mountadar M. 2010. Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation, Journal of Hazardous Materials, 174 (1-3): 807-812.
  • Justino C.I., Duarte K., Loureiro F., Pereira R., Antunes S.C., Marques S.M., Gonçalves F., Rocha-Santos T.A., Freitas A.C. 2009. Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation, Journal of Hazardous Materials, 172 (2-3): 1560-1572.
  • Ibrahimoglu B., Yilmazoglu M.Z. 2018. Disposal of olive mill wastewater with DC arc plasma method, Journal of Environmental Management, 217: 727-734.
  • Turano E., Curcio S., De Paola M.G., Calabrò V., Iorio G. 2002. An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater, Journal of Membrane Science, 209 (2): 519-531.
  • Lucas M.S., Peres J.A. 2009. Removal of COD from olive mill wastewater by Fenton's reagent: Kinetic study, Journal of Hazardous Materials, 168 (2-3): 1253-1259.
  • Calabrò P.S., Fòlino A., Tamburino V., Zappia G., Zema D.A. 2018. Increasing the tolerance to polyphenols of the anaerobic digestion of olive wastewater through microbial adaptation, Biosystems Engineering, 172: 19-28.
  • El-Abbassi A., Kiai H., Raiti J., Hafidi A. 2014. Application of ultrafiltration for olive processing wastewaters treatment, Journal of Cleaner Production, 65: 432-438.
  • Ochando-Pulido J.M., Martinez-Ferez A. 2018. Operation setup of a nanofiltration membrane unit for purification of two-phase olives and olive oil washing wastewaters, Science of the Total Environment, 612: 758-766.
  • Ochando-Pulido J., Stoller M., Di Palma L., Martinez-Ferez A. 2014. Threshold performance of a spiral-wound reverse osmosis membrane in the treatment of olive mill effluents from two-phase and three-phase extraction processes, Chemical Engineering and Processing: Process Intensification, 83: 64-70.
  • Masi F., Bresciani R., Munz G., Lubello C. 2015. Evaporation–condensation of olive mill wastewater: Evaluation of condensate treatability through SBR and constructed Wetlands, Ecological Engineering, 80: 156-161.
  • Sklavos S., Gatidou G., Stasinakis A.S., Haralambopoulos D. 2015. Use of solar distillation for olive mill wastewater drying and recovery of polyphenolic compounds, Journal of Environmental Management, 162: 46-52.
  • Papaphilippou P.C., Yiannapas C., Politi M., Daskalaki V.M., Michael C., Kalogerakis N., Mantzavinos D., Fatta-Kassinos D. 2013. Sequential coagulation–flocculation, solvent extraction and photo-Fenton oxidation for the valorization and treatment of olive mill effluent, Chemical Engineering Journal, 224: 82-88.
  • Hodaifa G., Gallardo P.A.R., García C.A., Kowalska M., Seyedsalehi M. 2019. Chemical oxidation methods for treatment of real industrial olive oil mill wastewater, Journal of the Taiwan Institute of Chemical Engineers.
  • Chedeville O., Debacq M., Porte C. 2009. Removal of phenolic compounds present in olive mill wastewaters by ozonation, Desalination, 249 (2): 865-869.
  • González-González A., Cuadros F. 2015. Effect of aerobic pretreatment on anaerobic digestion of olive mill wastewater (OMWW): An ecoefficient treatment, Food and bioproducts processing, 95: 339-345.
  • Galliou F., Markakis N., Fountoulakis M., Nikolaidis N., Manios T. 2018. Production of organic fertilizer from olive mill wastewater by combining solar greenhouse drying and composting, Waste Management, 75: 305-311.
  • Ubay G., Ozturk I. 1997. Anaerobic treatment of olive mill effluents, Water Science and Technology, 36 (2-3): 287-294.
  • Ochando-Pulido J., Pimentel-Moral S., Verardo V., Martinez-Ferez A. 2017. A focus on advanced physico-chemical processes for olive mill wastewater treatment, Separation and Purification Technology, 179: 161-174.
  • Sampaio M., Gonçalves M., Marques I. 2011. Anaerobic digestion challenge of raw olive mill wastewater, Bioresource Technology, 102 (23): 10810-10818.
  • Azbar N., Tutuk F., Keskin T. 2009. Biodegradation performance of an anaerobic hybrid reactor treating olive mill effluent under various organic loading rates, International Biodeterioration & Biodegradation, 63 (6): 690-698.
  • El-Gohary F., Tawfik A., Badawy M., El-Khateeb M.A. 2009. Potentials of anaerobic treatment for catalytically oxidized olive mill wastewater (OMW), Bioresource Technology, 100 (7): 2147-2154.
  • McNamara C.J., Anastasiou C.C., O'Flaherty V., Mitchell R. 2008. Bioremediation of olive mill wastewater, International Biodeterioration & Biodegradation, 61 (2): 127-134.
  • Paraskeva P., Diamadopoulos E. 2006. Technologies for olive mill wastewater (OMW) treatment: a review, Journal of Chemical Technology and Biotechnology, 81 (9): 1475-1485.
  • Mechich T., Sayadi S. 2005. Evaluating process imbalance of anaerobic digestion of olive mill wastewaters, Process Biochemistry, 40 (1): 139-145.
  • Dareioti M.A., Dokianakis S.N., Stamatelatou K., Zafiri C., Kornaros M. 2010. Exploitation of olive mill wastewater and liquid cow manure for biogas production, Waste Management, 30 (10): 1841-1848.
  • Gelegenis J., Georgakakis D., Angelidaki I., Christopoulou N., Goumenaki M. 2007. Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure, Applied Energy, 84 (6): 646-663.
  • Martinez-Garcia G., Johnson A.C., Bachmann R.T., Williams C.J., Burgoyne A., Edyvean R.G.J. 2009. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis, Journal of Hazardous Materials, 164 (2-3): 1398-1405.
  • Orive M., Cebrián M., Zufía J. 2016. Techno-economic anaerobic co-digestion feasibility study for two-phase olive oil mill pomace and pig slurry, Renewable Energy, 97: 532-540.
  • Al-Mallahi J., Furuichi T., Ishii K. 2016. Appropriate conditions for applying NaOH-pretreated two-phase olive milling waste for codigestion with food waste to enhance biogas production, Waste Management, 48: 430-439.
  • Gharsallah N., Labat M., Aloui F., Sayadi S. 1999. The effect of Phanerochaete chrysosporium pretreatment of olive mill waste waters on anaerobic digestion, Resources Conservation and Recycling, 27 (1-2): 187-192.
  • Dareioti M.A., Dokianakis S.N., Stamatelatou K., Zafiri C., Kornaros M. 2009. Biogas production from anaerobic co-digestion of agroindustrial wastewaters under mesophilic conditions in a two-stage process, Desalination, 248 (1-3): 891-906.
  • Gunay A., Karadag D. 2015. Recent developments in the anaerobic digestion of olive mill effluents, Process Biochemistry, 50 (11): 1893-1903.
  • Tufaner F. 2015. Büyükbaş hayvansal atıkların biyometanizasyon süreçlerinin iyileştirilmesinin araştırılması, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 275s, İstanbul.
  • Tufaner F. 2018. Post-treatment of effluents from UASB reactor treating industrial wastewater sediment by constructed wetland, Environmental Technology.
  • Tufaner F., Avşar Y., Gönüllü M.T. 2017. Modeling of biogas production from cattle manure with co-digestion of different organic wastes using an artificial neural network, Clean Technologies and Environmental Policy, 19 (9): 2255-2264.
  • APHA 2005. Water Environmental American Public Health Association, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA): Washington, DC, USA.
  • Rajesh Banu J., Arulazhagan P., Adish Kumar S., Kaliappan S., Lakshmi A.M. 2015. Anaerobic co-digestion of chemical-and ozone-pretreated sludge in hybrid upflow anaerobic sludge blanket reactor, Desalination and Water Treatment, 54 (12): 3269-3278.
  • Forster-Carneiro T., Perez M., Romero L.I. 2008. Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste, Bioresource Technology, 99 (15): 6994-7002.
  • Lee E., Bittencourt P., Casimir L., Jimenez E., Wang M., Zhang Q., Ergas S.J. 2019. Biogas production from high solids anaerobic co-digestion of food waste, yard waste and waste activated sludge, Waste Management, 95: 432-439.
  • Pandey P.K., Ndegwa P.M., Soupir M.L., Alldredge J.R., Pitts M.J. 2011. Efficacies of inocula on the startup of anaerobic reactors treating dairy manure under stirred and unstirred conditions, Biomass & Bioenergy, 35 (7): 2705-2720.
  • Guendouz J., Buffiere P., Cacho J., Carrere M., Delgenes J.P. 2010. Dry anaerobic digestion in batch mode: Design and operation of a laboratory-scale, completely mixed reactor, Waste Management, 30 (10): 1768-1771.
  • Niaounakis M., Halvadakis C.P. 2006. Olive Processing Waste Management: Literature Review and Patent Survey, Second Edition, Elsevier Science, 498p, Amsterdam (Netherlands).
  • Yangui A., Abderrabba M. 2018. Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity, Food Chemistry, 262: 102-109.
  • Yetilmezsoy K., Sakar S. 2008. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation, Journal of Hazardous Materials, 151 (2-3): 547-558.
  • Öztürk İ. 2007. Anaerobik Arıtma ve Uygulamaları, Genişletilmiş 2 Baskı, Su Vakfı Yayınları, 480s, İstanbul.
  • Tchobanoglus G., Burton F., Stensel H.D. 2003. Wastewater engineering: Treatment and reuse,
  • Tufaner F., Avsar Y. 2019. Economic analysis of biogas production from small scale anaerobic digestion systems for cattle manure, Environmental Research and Technology, 2 (1): 6-12.
There are 57 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Fatih Tufaner 0000-0002-1286-7846

Project Number MÜFLAP/2017-0012
Publication Date December 25, 2020
Submission Date January 18, 2020
Acceptance Date May 8, 2020
Published in Issue Year 2020 Volume: 9 Issue: 4

Cite

IEEE F. Tufaner, “Zeytin Karasuyunun Anaerobik Arıtılabilirliği ve Biyogaz Üretim Potansiyelinin Araştırılması”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 4, pp. 1766–1778, 2020, doi: 10.17798/bitlisfen.676940.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS