Research Article
BibTex RIS Cite

Platin Grubu Metal İçeren Demir Matının Oksidatif Koşullarda Çözeltiye Alınmasının İncelenmesi

Year 2020, Volume: 9 Issue: 4, 1795 - 1806, 25.12.2020
https://doi.org/10.17798/bitlisfen.689937

Abstract

Özellikle kara taşıtlarında fosil bazlı yakıtların yakılması sonucu oluşan tehlikeli gazların (CO, NOx, hidrokarbon (HC)) daha az zararlı gazlara (CO2, N2, H2O) dönüştürülmesinde katalitik dönüştürücüler kullanılmaktadır. Bu kimyasal dönüşüm platin grubu metaller (PGM) varlığında çok kısa sürede yüksek verimle gerçekleşmektedir. Dünya’da PGM konusunda yaşanan arz-talep dengesizliği sebebiyle her türlü PGM ihtiva eden atıktan değerli metallerin geri kazanımı çok büyük önem arz etmektedir.
Bu bilimsel çalışmada, katalitik dönüştürücülerden katı-katı ekstraksiyon yoluyla PGM’lerin bünyesinde zenginleştirildiği demir matının çözeltiye alınma şartlarının belirlenmesi amacıyla hidroklorik asit varlığında farklı oksidanlar (ozon(O3) ve oksijen(O2)) kullanarak çözümlendirme şartları araştırılmıştır. En iyi deney şartlarının belirlenmesi için oksidan türü, oksidan miktarı, çözücü konsantrasyonu, karıştırma hızı ve reaksiyon sıcaklığı parametreleri incelenerek deneyler gerçekleştirilmiştir. %95 üzerinde verim; 5 gr örnek 4 M HCl 200 mL ile 50 mg O3/dakika ve 800 devir/dakika reaksiyon şartlarında 12 saat süre sonunda 60°C reaksiyon sıcaklığında elde edilebilmiştir. Deneylerin gerçekleştirildiği basamaklarda hammadde XRD analizi ile karakterize edilerek deneyde kullanılan hammaddenin yapısı aydınlatılmıştır. Çözünmeden geri kalan malzeme SEM-EDS yöntemi karakterize edilerek liç işlemi sonrası kalan yapı belirlenmiştir.

Supporting Institution

TÜBİTAK

Project Number

217M284

Thanks

Bu çalışma; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 217M284 numaralı proje kapsamında desteklenmiştir. Makalenin bilimsel olarak gelişimine katkı sağlayan hakemlere ve derginin bölüm editörüne teşekkür ederiz.

References

  • 1. Dong H., Zhao J., Chen J., Wu Y., Li B. 2015. Recovery of platinum group metals from spent catalysts: a review, International Journal of Mineral Processing, 145 108-113.
  • 2. Crundwell F.K., Moats M., Ramachandran V. 2011. Extractive metallurgy of nickel, cobalt and platinum group metals: Elsevier.
  • 3. Kolliopoulos G., Balomenos E., Giannopoulou I., Yakoumis I., Panias D. 2014. Behavior of platinum group metals during their pyrometallurgical recovery from spent automotive catalysts, Open Access Library Journal, 1 (05): 1-5.
  • 4. Morcali M.H., Akman S., Yucel O. 2015. Determination of the Optimum NiS Fire Assay Parameters for Pt, Pd, and Rh in Automotive Exhaust Catalytic Converters, Chemical Engineering Communications, 202 (9): 1145-1154.
  • 5. Peng Z., Li Z., Lin X., Tang H., Ye L., Ma Y., Rao M., Zhang Y., Li G., Jiang T. 2017. Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts, JOM, 69 (9): 1553-1562.
  • 6. Jung V. 1991. Automotive exhaust catalysts: PGM usage and recovery. EMC ’91: Non-Ferrous Metallurgy—Present and Future. Dordrecht, Springer Netherlands: 231-239.
  • 7. Yamada K., Ogino M., Ezawa N., Inoue H. 2010. Method and apparatus for recovering platinum group elements, US patent 7,815,706.
  • 8. Hoffmann J.E. 1988. Recovery of platinum-group metals from gabbroic rocks metals from auto catalysts, JOM, 40 (6): 40-44.
  • 9. Ezawa N., Inoue H., Takada S., Masuda H. 1993. Process of recovering platinum group metal, US patent 5,252,305.
  • 10. Van Schalkwyk R.F., Eksteen J.J., Akdogan G. 2013. Leaching of Ni–Cu–Fe–S converter matte at varying iron endpoints; mineralogical changes and behaviour of Ir, Rh and Ru, Hydrometallurgy, 136 36-45.
  • 11. Ivanović S.Z., Gorgievski M.D., Božić D.S., Trujuć V.K., Mišić L.D. 2011. Removal of platinum group metals (PGMs) from the spent automobile catalyst by the pyrometallurgical process. 15th International Research/Expert Conference, TMT 2011. Prague, Czech Republic: 701-710.
  • 12. Fornalczyk A., Saternus M. 2009. Removal of platinum group metals from the used auto catalytic converter, Metalurgija, 48 (2): 133-136.
  • 13. Hagelüken C. 2006. Recycling of electronic scrap at Umicore precious metals refining, Acta Metallurgica Slovaca, 12, 111-120.
  • 14. Kim B.-S., Lee J.-C., Jeong J., Yang D.-H., Shin D., Lee K.-I. 2013. A Novel Process for Extracting Precious Metals from Spent Mobile Phone PCBs and Automobile Catalysts, Materials Transactions, 54 (6): 1045-1048.
  • 15. Kim B.-S., Lee J.-c., Seo S.-P., Park Y.-K., Sohn H.Y. 2004. A process for extracting precious metals from spent printed circuit boards and automobile catalysts, JOM, 56 (12): 55-58.
  • 16. Keyworth B. 1982. The role of pyrometallurgy in the recovery of precious metals from secondary materials. Precious Metals 1982, Sixth International Precious Metals Institute Conference, California, USA, June 7 - 11, 1982.
  • 17. Burkhard R., Hoffelner W., Eschenbach R.C. 1994. Recycling of metals from waste with thermal plasma, Resources, Conservation and Recycling, 10 (1): 11-16.
  • 18. Boulos M.I., Fauchais P., Pfender E. 2013. Thermal Plasmas: Fundamentals and Applications: Springer US.
  • 19. Fornalczyk A., Saternus M. 2013. Vapour treatment method against other pyro-and hydrometallurgical processes applied to recover platinum from used auto catalytic converters, Acta Metallurgica Sinica, 26 (3): 247-256.
  • 20. Kayanuma Y., Okabe T.H., Maeda M. 2004. Metal vapor treatment for enhancing the dissolution of platinum group metals from automotive catalyst scrap, Metallurgical and Materials Transactions B, 35 (5): 817-824.
  • 21. Han K.N., Kim P.N.-s. 2006. Recovery of platinum group metals, U.S. Patent 7,067,090.
  • 22. Yamada K., Ogino M., Ezawa N., Inoue H. 2010. Method and apparatus for recovering platinum group elements, US patent 7,815,706.
  • 23. Shibuya E.K., Sarkis J.E.S., Enzweiler J., Jorge A.P.S., Figueiredo A.M.G. 1998. Determination of platinum group elements and gold in geological materials using an ultraviolet laser ablation high-resolution inductively coupled plasma mass spectrometric technique, Journal of Analytical Atomic Spectrometry, 13 (9): 941-944.
  • 24. Juvonen M., Bartha A., Lakomaa T.M., Soikkeli L.A., Bertalan E., Kallio E.I., Ballok M. 2004. Comparison of Recoveries by Lead Fire Assay and Nickel Sulfide Fire Assay in the Determination of Gold/Platinum/Palladium and Rhenium in Sulfide Ore Samples, Geostandards and Geoanalytical research, 28 (1): 123-130.
  • 25. Peng Z., Li Z., Lin X., Tang H., Ye L., Ma Y., Rao M., Zhang Y., Li G., Jiang T. 2017. Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts, JOM, 69 (9): 1553-1562.
  • 26. Van Schalkwyk R.F., Eksteen, J.J., Petersen, J., Thyse, E.L., Akdogan, G. 2011. An experimental evaluation of the leaching kinetics of PGM-containing Ni-Cu-Fe-S Peirce Smith converter matte, under atmospheric leach conditions, Minerals Engineering, 24 (6): 524-534.
  • 27. Jefferyi G.H., Bassett, J., Mendham J., Denney, R.C. Vogel’s Textbook of Quantitative Chemical Analysis, Fifth Edition.
  • 28. Hwang C.C., Streeter R.C., Young R.K., Shah Y.T. 1987. Kinetics of the ozonation of pyrite in aqueous suspension. Fuel, 66 (11): 1574-1578.
  • 29. Rodríguez-Rodríguez C., Nava-Alonso F., Uribe-Salas A. 2018. Pyrite oxidation with ozone: stoichiometry and kinetics. Canadian Metallurgical Quarterly, 57 (3): 294-303.
  • 30. Viñals J., Juan E., Ruiz M., Ferrando E., Cruells M., Roca A., Casado J. 2006. Leaching of gold and palladium with aqueous ozone in dilute chloride media, Hydrometallurgy, 81 (2): 142-151.

Investigation of Iron Matte Containing PGMs Leaching under Oxidative Conditions

Year 2020, Volume: 9 Issue: 4, 1795 - 1806, 25.12.2020
https://doi.org/10.17798/bitlisfen.689937

Abstract

Catalytic converters are especially used to convert hazardous gases (CO, NOx, hydrocarbon (HC)) to less harmful gases (CO2, N2, H2O) resulting from the combustion of fossil based fuels used in vehicles. The high yield of these reactions are achieved in a very short period of time by the platinum group metals (PGM) These chemical transformations take place in a very short time as well as with high efficiency in the presence of platinum group metals (PGM). Recycling of precious metals from all kind waste containing PGM is very important because of the supply-demand unbalance.
In this scientific study, the dissolution conditions of iron matte which was produced by applying solid-solid extraction of PGMs from catalytic converters, were investigated in the presence of hydrochloric acid with using various oxidants (ozone (O3) and oxygen (O2)). To determine the highest dissolution conditions, experimental studies were carried out by examining the oxidant type, oxidant quantity, solvent concentration, stirring speed and reaction temperature. At 95% dissolution yield was obtained using 5 g sample 200 mL of 4 M HCl with 50 mg O3/minute and 800 rpm at 60°C after 12 h. The chemical composition of raw material was characterized by using XRD and also SEM-EDS technique was used to identify the undissolved material.

Project Number

217M284

References

  • 1. Dong H., Zhao J., Chen J., Wu Y., Li B. 2015. Recovery of platinum group metals from spent catalysts: a review, International Journal of Mineral Processing, 145 108-113.
  • 2. Crundwell F.K., Moats M., Ramachandran V. 2011. Extractive metallurgy of nickel, cobalt and platinum group metals: Elsevier.
  • 3. Kolliopoulos G., Balomenos E., Giannopoulou I., Yakoumis I., Panias D. 2014. Behavior of platinum group metals during their pyrometallurgical recovery from spent automotive catalysts, Open Access Library Journal, 1 (05): 1-5.
  • 4. Morcali M.H., Akman S., Yucel O. 2015. Determination of the Optimum NiS Fire Assay Parameters for Pt, Pd, and Rh in Automotive Exhaust Catalytic Converters, Chemical Engineering Communications, 202 (9): 1145-1154.
  • 5. Peng Z., Li Z., Lin X., Tang H., Ye L., Ma Y., Rao M., Zhang Y., Li G., Jiang T. 2017. Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts, JOM, 69 (9): 1553-1562.
  • 6. Jung V. 1991. Automotive exhaust catalysts: PGM usage and recovery. EMC ’91: Non-Ferrous Metallurgy—Present and Future. Dordrecht, Springer Netherlands: 231-239.
  • 7. Yamada K., Ogino M., Ezawa N., Inoue H. 2010. Method and apparatus for recovering platinum group elements, US patent 7,815,706.
  • 8. Hoffmann J.E. 1988. Recovery of platinum-group metals from gabbroic rocks metals from auto catalysts, JOM, 40 (6): 40-44.
  • 9. Ezawa N., Inoue H., Takada S., Masuda H. 1993. Process of recovering platinum group metal, US patent 5,252,305.
  • 10. Van Schalkwyk R.F., Eksteen J.J., Akdogan G. 2013. Leaching of Ni–Cu–Fe–S converter matte at varying iron endpoints; mineralogical changes and behaviour of Ir, Rh and Ru, Hydrometallurgy, 136 36-45.
  • 11. Ivanović S.Z., Gorgievski M.D., Božić D.S., Trujuć V.K., Mišić L.D. 2011. Removal of platinum group metals (PGMs) from the spent automobile catalyst by the pyrometallurgical process. 15th International Research/Expert Conference, TMT 2011. Prague, Czech Republic: 701-710.
  • 12. Fornalczyk A., Saternus M. 2009. Removal of platinum group metals from the used auto catalytic converter, Metalurgija, 48 (2): 133-136.
  • 13. Hagelüken C. 2006. Recycling of electronic scrap at Umicore precious metals refining, Acta Metallurgica Slovaca, 12, 111-120.
  • 14. Kim B.-S., Lee J.-C., Jeong J., Yang D.-H., Shin D., Lee K.-I. 2013. A Novel Process for Extracting Precious Metals from Spent Mobile Phone PCBs and Automobile Catalysts, Materials Transactions, 54 (6): 1045-1048.
  • 15. Kim B.-S., Lee J.-c., Seo S.-P., Park Y.-K., Sohn H.Y. 2004. A process for extracting precious metals from spent printed circuit boards and automobile catalysts, JOM, 56 (12): 55-58.
  • 16. Keyworth B. 1982. The role of pyrometallurgy in the recovery of precious metals from secondary materials. Precious Metals 1982, Sixth International Precious Metals Institute Conference, California, USA, June 7 - 11, 1982.
  • 17. Burkhard R., Hoffelner W., Eschenbach R.C. 1994. Recycling of metals from waste with thermal plasma, Resources, Conservation and Recycling, 10 (1): 11-16.
  • 18. Boulos M.I., Fauchais P., Pfender E. 2013. Thermal Plasmas: Fundamentals and Applications: Springer US.
  • 19. Fornalczyk A., Saternus M. 2013. Vapour treatment method against other pyro-and hydrometallurgical processes applied to recover platinum from used auto catalytic converters, Acta Metallurgica Sinica, 26 (3): 247-256.
  • 20. Kayanuma Y., Okabe T.H., Maeda M. 2004. Metal vapor treatment for enhancing the dissolution of platinum group metals from automotive catalyst scrap, Metallurgical and Materials Transactions B, 35 (5): 817-824.
  • 21. Han K.N., Kim P.N.-s. 2006. Recovery of platinum group metals, U.S. Patent 7,067,090.
  • 22. Yamada K., Ogino M., Ezawa N., Inoue H. 2010. Method and apparatus for recovering platinum group elements, US patent 7,815,706.
  • 23. Shibuya E.K., Sarkis J.E.S., Enzweiler J., Jorge A.P.S., Figueiredo A.M.G. 1998. Determination of platinum group elements and gold in geological materials using an ultraviolet laser ablation high-resolution inductively coupled plasma mass spectrometric technique, Journal of Analytical Atomic Spectrometry, 13 (9): 941-944.
  • 24. Juvonen M., Bartha A., Lakomaa T.M., Soikkeli L.A., Bertalan E., Kallio E.I., Ballok M. 2004. Comparison of Recoveries by Lead Fire Assay and Nickel Sulfide Fire Assay in the Determination of Gold/Platinum/Palladium and Rhenium in Sulfide Ore Samples, Geostandards and Geoanalytical research, 28 (1): 123-130.
  • 25. Peng Z., Li Z., Lin X., Tang H., Ye L., Ma Y., Rao M., Zhang Y., Li G., Jiang T. 2017. Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts, JOM, 69 (9): 1553-1562.
  • 26. Van Schalkwyk R.F., Eksteen, J.J., Petersen, J., Thyse, E.L., Akdogan, G. 2011. An experimental evaluation of the leaching kinetics of PGM-containing Ni-Cu-Fe-S Peirce Smith converter matte, under atmospheric leach conditions, Minerals Engineering, 24 (6): 524-534.
  • 27. Jefferyi G.H., Bassett, J., Mendham J., Denney, R.C. Vogel’s Textbook of Quantitative Chemical Analysis, Fifth Edition.
  • 28. Hwang C.C., Streeter R.C., Young R.K., Shah Y.T. 1987. Kinetics of the ozonation of pyrite in aqueous suspension. Fuel, 66 (11): 1574-1578.
  • 29. Rodríguez-Rodríguez C., Nava-Alonso F., Uribe-Salas A. 2018. Pyrite oxidation with ozone: stoichiometry and kinetics. Canadian Metallurgical Quarterly, 57 (3): 294-303.
  • 30. Viñals J., Juan E., Ruiz M., Ferrando E., Cruells M., Roca A., Casado J. 2006. Leaching of gold and palladium with aqueous ozone in dilute chloride media, Hydrometallurgy, 81 (2): 142-151.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

M.hakan Morcali 0000-0002-5021-4459

Merve Aksu This is me

Project Number 217M284
Publication Date December 25, 2020
Submission Date February 16, 2020
Acceptance Date September 8, 2020
Published in Issue Year 2020 Volume: 9 Issue: 4

Cite

IEEE M. Morcali and M. Aksu, “Platin Grubu Metal İçeren Demir Matının Oksidatif Koşullarda Çözeltiye Alınmasının İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 4, pp. 1795–1806, 2020, doi: 10.17798/bitlisfen.689937.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS