Research Article
BibTex RIS Cite

Pd-Au Alaşımında Au Atomunun Konsantrasyonunun Polyhedron Topakları Oluşumu Üzerine Etkisinin Moleküler Dinamik Yöntemle İncelenmesi

Year 2021, Volume: 10 Issue: 1, 9 - 15, 21.03.2021
https://doi.org/10.17798/bitlisfen.796308

Abstract

Bu çalışmada, silikonun farklı konsantrasyon oranları için Pd-Au düzenli alaşım sistemlerinin amorf fazda meydana gelen polyhedron türü topakların yapısal özellikleri Moleküler Dinamik (MD) benzetim yöntemi ile belirlendi. Atomlar arasındaki etkileşmeleri belirlemek için çok cisim etkileşmeleri temeline dayanan Gömülmüş Atom Metodu’nun Sutton-Chen (SC) potansiyel fonksiyonu kullanıldı. Sistemlerin farklı Au konsantrasyonu için amorf fazda meydana gelen polyhedron türü topaklar Honeycutt-Andersen (HA) yöntemi ile belirlenen bağlı çiftler ile elde edildi. Sonuç olarak, amorf fazda Pd10Au90 yapısının ideal icosahedral (icos) türü polyhedron topaklarının oluşumu bakımından en uygun yapı olduğu sonucuna varılmıştır.

References

  • Luyten J., Schurmans M., Creemers C., Bunnik B.S., Kramer G.J. 2007. Surface segregation in Pt25Rh75 alloys studied by Monte Carlo simulations and the modified embedded atom method. Surface Science, 601: 1668-1676.
  • Garbacz H., Mizera J., Laskowski Z., Gierej M. 2011. Microstructure and mechanical properties of a Pt–Rh alloy. Powder Technology, 208: 488-490.
  • Luyten J., De Keyzer J., Wollants P., Creemers C. 2009. Construction of modified embedded atom method potentials for the study of the bulk phase behaviour in binary Pt–Rh, Pt–Pd, Pd–Rh and ternary Pt–Pd–Rh alloys. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 33: 370-376.
  • Rdzawski Z.M., Stobrawa J.P. 2004. Microstructure and properties of the new Pt–Rh based alloys for high-temperature applications. Journal of Materials Processing Technology, 153: 681–687.
  • Ren D.M., Qin J.H., Wang J.B., Tsong T. 1993. Oscillatory compositional depth profiles in surface segregation of a Pt-Rh alloy. Physical Review B, 47: 3944-3946.
  • Yuge K., Seko A., Kuwabara A., Oba F., Tanaka I. 2006. First-principles study of bulk ordering and surface segregation in Pt-Rh binary alloys. Physical Review B, 74: 174202.
  • Qi L., Dong L.F., Zhang S.L., Cui Z.Q., Ma M.Z., Jing Q, Li G., Liu R.P. 2007. Glass formation and local structure evolution in rapidly cooled Pd55Ni45 alloy melt: Molecular dynamics simulation. Comp. Mat. Sci., 42: 713-718.
  • Zadpoor A. A. 2020. Meta-biomaterials. Biomaterials Science, 8 (1): 18-38.
  • Lu K. 1996. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science and Engineering, R16: 161-221.
  • Sauvage F., Schymkowitz J., Rousseau F., Schmidt B.Z., Remaut K., Braeckmans K., De Smedt S.C. 2020. Nanomaterials to avoid and destroy protein aggregates. Nano Today, 100837.
  • Wang X., Dong S., Ashour A., Zhang W., Han B. 2020. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Construction and Building Materials, 240: 117942.
  • Jian Z.Y., Chen J., Chang F.E., Zeng Z., He T., Jie W. 2010. Simulation of molecular dynamics of silver subcritical nuclei and crystal clusters during solidification. Sci China Tech Sci., 53: 3203-3208.
  • Özgen S. 1997. Sayısal hesaplama yöntemlerinin şekil hatırlamalı alaşımlarda difüzyonsuz faz dönüşümlerine uygulanması. Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.
  • Parrinello M., Rahman A. 1980. Crystal structure and pair potentials: A molecular-dynamics study. Physical Review Letters, 45 (14): 1196.
  • Daw S., Baskes M.L. 1984. Embedded-atom method: derivation and application to impuries, surfaces and other defects in metals. Physical Review B, 29: 6443-6453.
  • Sutton A.P., Chen J. 1990. Long-range Finnis-Sinclair potentials. Philosophical Magazine Letter, 61: 139-146.
  • Honeycutt J.D., Andersen H.C. 1987. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. Journal of Physical Chemistry, 91 (19): 4950-4963.
  • Qi D.W., Wang S. 1991. Icosahedral order and defects in metallic liquids and glasses. Phys. Rev. B. 44: 884-889.
  • Dong K.J., Liu R.S., Yu A.B., Zou R.P., Li J.Y. 2003. Simulation study of the evolution mechanisms of clusters in a large-scale liquid Al system during rapid cooling processes. Journal of Physics: Condensed Matter, 15 (6): 743.
  • Celik F.A. 2014. Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions. Physics Letters A, 378 (30-31): 2151-2156.
  • Faruq M., Villesuzanne A., Shao G. 2018. Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties. Journal of Non-Crystalline Solids, 487: 72-86.
  • Stukowski A. 2009. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng., 18: 15012.
Year 2021, Volume: 10 Issue: 1, 9 - 15, 21.03.2021
https://doi.org/10.17798/bitlisfen.796308

Abstract

References

  • Luyten J., Schurmans M., Creemers C., Bunnik B.S., Kramer G.J. 2007. Surface segregation in Pt25Rh75 alloys studied by Monte Carlo simulations and the modified embedded atom method. Surface Science, 601: 1668-1676.
  • Garbacz H., Mizera J., Laskowski Z., Gierej M. 2011. Microstructure and mechanical properties of a Pt–Rh alloy. Powder Technology, 208: 488-490.
  • Luyten J., De Keyzer J., Wollants P., Creemers C. 2009. Construction of modified embedded atom method potentials for the study of the bulk phase behaviour in binary Pt–Rh, Pt–Pd, Pd–Rh and ternary Pt–Pd–Rh alloys. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 33: 370-376.
  • Rdzawski Z.M., Stobrawa J.P. 2004. Microstructure and properties of the new Pt–Rh based alloys for high-temperature applications. Journal of Materials Processing Technology, 153: 681–687.
  • Ren D.M., Qin J.H., Wang J.B., Tsong T. 1993. Oscillatory compositional depth profiles in surface segregation of a Pt-Rh alloy. Physical Review B, 47: 3944-3946.
  • Yuge K., Seko A., Kuwabara A., Oba F., Tanaka I. 2006. First-principles study of bulk ordering and surface segregation in Pt-Rh binary alloys. Physical Review B, 74: 174202.
  • Qi L., Dong L.F., Zhang S.L., Cui Z.Q., Ma M.Z., Jing Q, Li G., Liu R.P. 2007. Glass formation and local structure evolution in rapidly cooled Pd55Ni45 alloy melt: Molecular dynamics simulation. Comp. Mat. Sci., 42: 713-718.
  • Zadpoor A. A. 2020. Meta-biomaterials. Biomaterials Science, 8 (1): 18-38.
  • Lu K. 1996. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science and Engineering, R16: 161-221.
  • Sauvage F., Schymkowitz J., Rousseau F., Schmidt B.Z., Remaut K., Braeckmans K., De Smedt S.C. 2020. Nanomaterials to avoid and destroy protein aggregates. Nano Today, 100837.
  • Wang X., Dong S., Ashour A., Zhang W., Han B. 2020. Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars. Construction and Building Materials, 240: 117942.
  • Jian Z.Y., Chen J., Chang F.E., Zeng Z., He T., Jie W. 2010. Simulation of molecular dynamics of silver subcritical nuclei and crystal clusters during solidification. Sci China Tech Sci., 53: 3203-3208.
  • Özgen S. 1997. Sayısal hesaplama yöntemlerinin şekil hatırlamalı alaşımlarda difüzyonsuz faz dönüşümlerine uygulanması. Doktora Tezi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ.
  • Parrinello M., Rahman A. 1980. Crystal structure and pair potentials: A molecular-dynamics study. Physical Review Letters, 45 (14): 1196.
  • Daw S., Baskes M.L. 1984. Embedded-atom method: derivation and application to impuries, surfaces and other defects in metals. Physical Review B, 29: 6443-6453.
  • Sutton A.P., Chen J. 1990. Long-range Finnis-Sinclair potentials. Philosophical Magazine Letter, 61: 139-146.
  • Honeycutt J.D., Andersen H.C. 1987. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. Journal of Physical Chemistry, 91 (19): 4950-4963.
  • Qi D.W., Wang S. 1991. Icosahedral order and defects in metallic liquids and glasses. Phys. Rev. B. 44: 884-889.
  • Dong K.J., Liu R.S., Yu A.B., Zou R.P., Li J.Y. 2003. Simulation study of the evolution mechanisms of clusters in a large-scale liquid Al system during rapid cooling processes. Journal of Physics: Condensed Matter, 15 (6): 743.
  • Celik F.A. 2014. Molecular dynamics simulation of polyhedron analysis of Cu–Ag alloy under rapid quenching conditions. Physics Letters A, 378 (30-31): 2151-2156.
  • Faruq M., Villesuzanne A., Shao G. 2018. Molecular-dynamics simulations of binary Pd-Si metal alloys: Glass formation, crystallisation and cluster properties. Journal of Non-Crystalline Solids, 487: 72-86.
  • Stukowski A. 2009. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng., 18: 15012.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Fatih Ahmet Çelik 0000-0001-7860-5550

Publication Date March 21, 2021
Submission Date September 17, 2020
Acceptance Date January 11, 2021
Published in Issue Year 2021 Volume: 10 Issue: 1

Cite

IEEE F. A. Çelik, “Pd-Au Alaşımında Au Atomunun Konsantrasyonunun Polyhedron Topakları Oluşumu Üzerine Etkisinin Moleküler Dinamik Yöntemle İncelenmesi”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 1, pp. 9–15, 2021, doi: 10.17798/bitlisfen.796308.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS