Research Article
BibTex RIS Cite

24. GÜNEŞ DÖNGÜSÜ BOYUNCA MEYDANA GELEN JEOMANYETİK FIRTINALARIN DAĞILIMI

Year 2021, Volume: 10 Issue: 4, 1394 - 1403, 31.12.2021
https://doi.org/10.17798/bitlisfen.955034

Abstract

Jeomanyetik fırtına, genellikle gezegenler arası manyetik alandaki anormal koşullar ve çeşitli güneş aktivitelerinin neden olduğu güneş rüzgârı plazma emisyonları nedeniyle Dünya’ nın manyetik alanında küresel bir bozulmadır. Jeomanyetik aktivitesi diğer döngülere göre en düşük sevide olan 24. güneş döngüsüdür. Bu çalışmada 24. Güneş döngüsünde meydana gelen ve jeomanyetik aktivitenin ciddiyetini belirtmek için beş seviyeli bir sistem olan G ölçeğine göre belirlenen jeomanyetik fırtınaların dağılımı incelenmiştir. Ayrıca jeomanyetik fırtına indisi olan Kp indisi, jeomanyetik fırtınanın şiddetini belirleyen Dst indisi ve güneş döngüsündeki ortalama güneş lekesi sayıları veri olarak kullanılmıştır. 24. güneş döngüsünün maksimum aşaması olan 2014 yılında ortalama 113 güneş lekesi sayısı gözlemlenmiştir. 24. döngü dönemi boyunca G ölçeğine göre toplam 381 jeomanyetik fırtına oluşmuştur. Bu fırtınaların %67.45’ i G1, %25.46’ sı G2, %4.72’ si G3 ve %2.36’ sı G4 düzeyinde meydana gelmiştir. Dst indis değerlerine göre %16.54’ ü sakin, %32.28’ i zayıf, %43.83’ ü orta, %6.82’ si güçlü ve %0.52’ si şiddetli fırtına olarak belirlenmiştir. Kp indisine göre en güçlü fırtına 83 nT ile 22 Haziran 2015 ve 08 Eylül 2017 tarihlerinde, Dst indis değerine göre -223 nT ile 25 Haziran 2015 tarihinde gerçekleşmiştir.

References

  • Nasa Science Space Place, 2021. https://spaceplace.nasa.gov/solar-cycles/en/ (Erişim Tarihi: 27.05.2021).
  • Liu Z., Zhang T., Wang H. 2021. Predicting sunspot numbers based on inverse number and intelligent fixed point. Solar Physics, 296 (5), 83.
  • Abdel-Rahman H.I., Marzouk B.A. 2018. Statistical method to predict the sunspots number. NRIAG Journal of Astronomy and Geophysics, 7 (2): 175-179.
  • Hanslmeier A. 2007. The Sun and Space Weather. Astrophysics and Space Science, second ed. (Springer e-book).
  • Koklu K. 2020. Mathematical analysis of the 09 March 2012 intense storm, Advances in Space Research, 66 (4): 932-941.
  • Gonzalez W.D., Josely J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. 1994. What is a geomagnetic storm?. Journal of Geophysical Research: Space Physics, 99 (A4): 5771– 5792.
  • Stern D.P. 1996. A brief history of magnetospheric physics during the space age. Reviews of Geophysics, 34 (1): 1-31.
  • Saba F.M.M., Gonzalez W.D., Gonzalez A.L.C. 1997. Relationships between the AE, ap and Dst indices near solar minimum (1974) and at solar maximum (1979). Annales Geophysicae, 15 (10): 1265–1270.
  • Gonzalez W.D., Tsurutani B.T., Gonzalez A.L.C. 1999. Interplanetary origin of geomagnetic storms. Space Science Reviews, 88: 529–562.
  • Kashcheyev A., Migoya-Orué Y., Amory-Mazaudier C., Fleury R., Nava B., Alazo-Cuartas K., Radicella S.M. 2018. Multivariable comprehensive analysis of two great geomagnetic storms of 2015. Journal of Geophysical Research: Space Physics, 123: 5000–5018.
  • Akasofu S.I. 1964. A Source of the energy for geomagnetic storms and auroras. Planetary and Space Science, 12 (9): 801-808.
  • Burton R.K., Mcpherron R.L., Russell C.T. 1975. An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80 (31): 4204–4214.
  • Eroglu E. 2019. Modeling the superstorm in the 24th solar cycle. Earth Planets Space, 71: 26.
  • Eroglu E. 2020. Modeling of 21 July 2017 Geomagnetic Storm. Journal of Engineering Technology and Applied Sciences, 5 (1): 33-49.
  • Inyurt S. 2020. Modeling and comparison of two geomagnetic storms. Advances in Space Research, 65 (3): 966-977.
  • Aksoy S., Tretyekov O.A. 2002. Study of a time variant cavity system. Journal of Electromagnetic Waves and Applications, 16 (11): 1535-1553.
  • Tretyekov O.A., Erden F. 2008. Temporal cavity oscillations caused by a wide band waveform. Progress In Electromagnetics Research B, 6: 183-204.
  • Eroglu E. 2011. Dalga kılavuzları boyunca geçici sinyallerin transferi. Doktora Tezi, Gebze Yüksek Teknoloji Enstitüsü, Mühendislik ve Fen Bilimleri Enstitüsü, Gebze, 1-158.
  • Eroglu E., Aksoy S., Tretyakov O.A. 2012. Surplus of energy for timedomain waveguide modes. Energy Education Science and Technology Part A: Energy Science and Research, 29 (1): 409-506.
  • Eroglu E., Ak N., Koklu K., Ozdemir Z., Celik N., Eren N., 2012. Special functions in transferring of energy; a special case: “Airy function”. Energy Education Science and Technology Part A: Energy Science and Research, 30 (1): 719-726.
  • Rathore B.S., Kaushik S.C., Parashar K.K., Bhadoria R.S., Kapil P., 2011. Statistical study of geomagnetic storms and their classification during solar cycle-23. International Journal of Physics and Applications, 3 (1): 91-96.
  • Sugiura M. 1964. Hourly Values of Equatorial Dst for the IGY, Annual International Geophysical Year, Vol. 35 (New York: Pergamon), 9, https://ntrs.nasa.gov/api/citations/19650020355/downloads/19650020355.pdf
  • De Canck M.H. 2007. Ionosphere Properties and Behaviors, Antennex, 119: 6-7.
  • Zolesi B., Cander L.R., 2014. Ionospheric Prediction and Forecasting, Springer Geophysics. Springer, Berlin, Heidelberg, 1-240.
  • Yildirim O., Inyurt S., Mekik C. 2016. Review of variations in M w< 7 earthquake motions on position and TEC (M w= 6.5 Aegean Sea earthquake sample). Natural Hazards and Earth System Sciences, 16 (2): 543-557.
  • Ulukavak M., Inyurt S. 2020. Seismo-ionospheric precursors of strong sequential earthquakes in Nepal region. Acta Astronautica, 166: 123-130.
  • The Kp-index, 2021. https://www.spaceweatherlive.com/en/help/the-kp-index.html (Erişim Tarihi: 05.05.2021).
  • Mosna Z., Sauli P., Santolik, O. 2007. Preparation of a Database for the Study of Scaling Phenomena in the Ionosphere, WDS’07 Proceeding of Contributed Papers, 2: 86-92.
  • Cahyadi M.N. 2014. Near-Field Coseismic Ionospheric Disturbances of Earthquakes In and Around Indonesia. PhD Thesis, Hokkaido University Collection of Scholarly and Academic Papers.
  • Hunsucker R.D., Hargreaves J.K. 2003. The High-Latitude Ionosphere and Its Effects on Radio Propagation. Cambridge University Press, Cambridge.
  • Sharma K., Dabas R.S., Sarkar S.K., Das R.M., Ravindran S., Gwal A.K. 2010. Anomalous enhancement of ionospheric F2 layer critical frequency and total electron content over low latitudes before three recent major earthquakes in China. Journal of Geophysical Research, 115 (A11): 4-9.
  • Loewe C.A., Prölss G.W., 1997. Classification and mean behavior of magnetic storms. Journal of Geophysical Research: Space Physics, 102 (A7): 14209–14213.
  • Gupta M.K.D., Basu D. 1965. Solar-terrestrial events in relation to the phase of the solar cycle. Journal of Atmospheric and Terrestrial Physics, 27 (9): 1029-1032.
  • Gonzalez W.D., Gonzalez A.L.C., Tsurutani B.T. 1990. Dual-peak solar cycle distribution of intense geomagnetic storms. Planetary and Space Science, 38 (2): 181-187.
  • Li Q., Gao Y., Zhu P., Chen H., Zhang X. 2011. Statistical study on great geomagnetic storms during solar cycle 23. Earthquake Science 24: 365–372.
  • Le G., Cai Z., Wang H., Zhu Y. 2012. Solar cycle distribution of great geomagnetic storms. Astrophysics and Space Science, 339: 151–156.
  • Selvakumaran R., Veenadhari B., Akiyama S., Pandya M., Gopalswamy N., Yashiro S., Kumar S., Mäkelä P., Xie H. 2016. On the reduced geoeffectiveness of solar cycle 24: A moderate storm perspective. Journal of Geophysical Research: Space Physics, 121: 8188–8202.
  • Bhoj C., Prasad L., Pokharia M., Mathpal C., Mathpal R. 2017. Space weather association with sunspots and geomagnetic storms for solar cycle 23 (1996-2007) and Solar Cycle 24 (2008-2016). Journal of Pure Applied and Industrial Physics, 7 (4): 156–161.
  • Watari S. 2017. Geomagnetic storms of cycle 24 and their solar sources. Earth Planets Space 69, 70.
  • Hajra R. 2021. Weakest solar cycle of the space age: a study on solar wind–magnetosphere energy coupling and geomagnetic activity. Solar Physics, 296 (2): 33.
  • The aurora and solar activity archive, 2021. https://www.spaceweatherlive.com/en/archive.html (Erişim Tarihi: 05.05.2021)
  • OMNIWeb, 2021. https://omniweb.gsfc.nasa.gov/form/dx1.html (Erişim Tarihi: 18.05.2021)
  • Kakad B., Kakad A., Ramesh D.S., Lakhina G.S. 2019. Diminishing activity of recent solar cycles (22 – 24) and their impact on geospace. Journal of Space Weather and Space Climate, 9 A1.
  • Rathore B.S., Kaushik S.C., Bhadoria R.S. Parashar K.K., Gupta D.C. 2012. Sunspots and geomagnetic storms during solar cycle-23. Indian Journal of Physics, 86 (7): 563–567.
  • Silbergleit V.M. 2012. Probable values of current solar cycle peak. Advances in Astronomy, 2012 (Special Issue).
  • Bartels J. 1938. Potsdamer erdmagnetische Kennziffern, 1 Mitteilung. Zeitschrift für Geophysik, 14: 68–78.

DISTRIBUTION OF GEOMAGNETIC STORMS OCCURING DURING THE 24TH SOLAR CYCLE

Year 2021, Volume: 10 Issue: 4, 1394 - 1403, 31.12.2021
https://doi.org/10.17798/bitlisfen.955034

Abstract

A geomagnetic storm is a global disturbance in the Earth's magnetic field, usually due to abnormal conditions in the interplanetary magnetic field and solar wind plasma emissions caused by various solar activities. It is the 24th solar cycle with the lowest geomagnetic activity compared to other cycles. In this study, the distribution of geomagnetic storms occurring in the 24th solar cycle and determined according to the G scale, which is a five-level system to indicate the severity of geomagnetic activity, was investigated. In addition, the Kp index, which is the geomagnetic storm index, the Dst index, which determines the intensity of the geomagnetic storm, and the average sunspot number in the solar cycle are used as data. An average of 113 sunspot numbers was observed in 2014, the maximum phase of the 24th solar cycle. During the 24th cycle period, a total of 381 geomagnetic storms occurred on the G scale. Of these storms, 67.45% occurred at the G1, 25.46% at the G2 level, 4.72% at the G3 level, and 2.36% at the G4 level. According to Dst index values, 16.54 percent were calm, 32.28% were weak, 43.83% were moderate, 6.82% were strong and 0.52% were severe storms. According to the Kp index, the strongest storm occurred with 83 nT on 22 June 2015 and 08 September 2017, and according to the Dst index value, on 25 June 2015 with -223 nT.

References

  • Nasa Science Space Place, 2021. https://spaceplace.nasa.gov/solar-cycles/en/ (Erişim Tarihi: 27.05.2021).
  • Liu Z., Zhang T., Wang H. 2021. Predicting sunspot numbers based on inverse number and intelligent fixed point. Solar Physics, 296 (5), 83.
  • Abdel-Rahman H.I., Marzouk B.A. 2018. Statistical method to predict the sunspots number. NRIAG Journal of Astronomy and Geophysics, 7 (2): 175-179.
  • Hanslmeier A. 2007. The Sun and Space Weather. Astrophysics and Space Science, second ed. (Springer e-book).
  • Koklu K. 2020. Mathematical analysis of the 09 March 2012 intense storm, Advances in Space Research, 66 (4): 932-941.
  • Gonzalez W.D., Josely J.A., Kamide Y., Kroehl H.W., Rostoker G., Tsurutani B.T., Vasyliunas V.M. 1994. What is a geomagnetic storm?. Journal of Geophysical Research: Space Physics, 99 (A4): 5771– 5792.
  • Stern D.P. 1996. A brief history of magnetospheric physics during the space age. Reviews of Geophysics, 34 (1): 1-31.
  • Saba F.M.M., Gonzalez W.D., Gonzalez A.L.C. 1997. Relationships between the AE, ap and Dst indices near solar minimum (1974) and at solar maximum (1979). Annales Geophysicae, 15 (10): 1265–1270.
  • Gonzalez W.D., Tsurutani B.T., Gonzalez A.L.C. 1999. Interplanetary origin of geomagnetic storms. Space Science Reviews, 88: 529–562.
  • Kashcheyev A., Migoya-Orué Y., Amory-Mazaudier C., Fleury R., Nava B., Alazo-Cuartas K., Radicella S.M. 2018. Multivariable comprehensive analysis of two great geomagnetic storms of 2015. Journal of Geophysical Research: Space Physics, 123: 5000–5018.
  • Akasofu S.I. 1964. A Source of the energy for geomagnetic storms and auroras. Planetary and Space Science, 12 (9): 801-808.
  • Burton R.K., Mcpherron R.L., Russell C.T. 1975. An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80 (31): 4204–4214.
  • Eroglu E. 2019. Modeling the superstorm in the 24th solar cycle. Earth Planets Space, 71: 26.
  • Eroglu E. 2020. Modeling of 21 July 2017 Geomagnetic Storm. Journal of Engineering Technology and Applied Sciences, 5 (1): 33-49.
  • Inyurt S. 2020. Modeling and comparison of two geomagnetic storms. Advances in Space Research, 65 (3): 966-977.
  • Aksoy S., Tretyekov O.A. 2002. Study of a time variant cavity system. Journal of Electromagnetic Waves and Applications, 16 (11): 1535-1553.
  • Tretyekov O.A., Erden F. 2008. Temporal cavity oscillations caused by a wide band waveform. Progress In Electromagnetics Research B, 6: 183-204.
  • Eroglu E. 2011. Dalga kılavuzları boyunca geçici sinyallerin transferi. Doktora Tezi, Gebze Yüksek Teknoloji Enstitüsü, Mühendislik ve Fen Bilimleri Enstitüsü, Gebze, 1-158.
  • Eroglu E., Aksoy S., Tretyakov O.A. 2012. Surplus of energy for timedomain waveguide modes. Energy Education Science and Technology Part A: Energy Science and Research, 29 (1): 409-506.
  • Eroglu E., Ak N., Koklu K., Ozdemir Z., Celik N., Eren N., 2012. Special functions in transferring of energy; a special case: “Airy function”. Energy Education Science and Technology Part A: Energy Science and Research, 30 (1): 719-726.
  • Rathore B.S., Kaushik S.C., Parashar K.K., Bhadoria R.S., Kapil P., 2011. Statistical study of geomagnetic storms and their classification during solar cycle-23. International Journal of Physics and Applications, 3 (1): 91-96.
  • Sugiura M. 1964. Hourly Values of Equatorial Dst for the IGY, Annual International Geophysical Year, Vol. 35 (New York: Pergamon), 9, https://ntrs.nasa.gov/api/citations/19650020355/downloads/19650020355.pdf
  • De Canck M.H. 2007. Ionosphere Properties and Behaviors, Antennex, 119: 6-7.
  • Zolesi B., Cander L.R., 2014. Ionospheric Prediction and Forecasting, Springer Geophysics. Springer, Berlin, Heidelberg, 1-240.
  • Yildirim O., Inyurt S., Mekik C. 2016. Review of variations in M w< 7 earthquake motions on position and TEC (M w= 6.5 Aegean Sea earthquake sample). Natural Hazards and Earth System Sciences, 16 (2): 543-557.
  • Ulukavak M., Inyurt S. 2020. Seismo-ionospheric precursors of strong sequential earthquakes in Nepal region. Acta Astronautica, 166: 123-130.
  • The Kp-index, 2021. https://www.spaceweatherlive.com/en/help/the-kp-index.html (Erişim Tarihi: 05.05.2021).
  • Mosna Z., Sauli P., Santolik, O. 2007. Preparation of a Database for the Study of Scaling Phenomena in the Ionosphere, WDS’07 Proceeding of Contributed Papers, 2: 86-92.
  • Cahyadi M.N. 2014. Near-Field Coseismic Ionospheric Disturbances of Earthquakes In and Around Indonesia. PhD Thesis, Hokkaido University Collection of Scholarly and Academic Papers.
  • Hunsucker R.D., Hargreaves J.K. 2003. The High-Latitude Ionosphere and Its Effects on Radio Propagation. Cambridge University Press, Cambridge.
  • Sharma K., Dabas R.S., Sarkar S.K., Das R.M., Ravindran S., Gwal A.K. 2010. Anomalous enhancement of ionospheric F2 layer critical frequency and total electron content over low latitudes before three recent major earthquakes in China. Journal of Geophysical Research, 115 (A11): 4-9.
  • Loewe C.A., Prölss G.W., 1997. Classification and mean behavior of magnetic storms. Journal of Geophysical Research: Space Physics, 102 (A7): 14209–14213.
  • Gupta M.K.D., Basu D. 1965. Solar-terrestrial events in relation to the phase of the solar cycle. Journal of Atmospheric and Terrestrial Physics, 27 (9): 1029-1032.
  • Gonzalez W.D., Gonzalez A.L.C., Tsurutani B.T. 1990. Dual-peak solar cycle distribution of intense geomagnetic storms. Planetary and Space Science, 38 (2): 181-187.
  • Li Q., Gao Y., Zhu P., Chen H., Zhang X. 2011. Statistical study on great geomagnetic storms during solar cycle 23. Earthquake Science 24: 365–372.
  • Le G., Cai Z., Wang H., Zhu Y. 2012. Solar cycle distribution of great geomagnetic storms. Astrophysics and Space Science, 339: 151–156.
  • Selvakumaran R., Veenadhari B., Akiyama S., Pandya M., Gopalswamy N., Yashiro S., Kumar S., Mäkelä P., Xie H. 2016. On the reduced geoeffectiveness of solar cycle 24: A moderate storm perspective. Journal of Geophysical Research: Space Physics, 121: 8188–8202.
  • Bhoj C., Prasad L., Pokharia M., Mathpal C., Mathpal R. 2017. Space weather association with sunspots and geomagnetic storms for solar cycle 23 (1996-2007) and Solar Cycle 24 (2008-2016). Journal of Pure Applied and Industrial Physics, 7 (4): 156–161.
  • Watari S. 2017. Geomagnetic storms of cycle 24 and their solar sources. Earth Planets Space 69, 70.
  • Hajra R. 2021. Weakest solar cycle of the space age: a study on solar wind–magnetosphere energy coupling and geomagnetic activity. Solar Physics, 296 (2): 33.
  • The aurora and solar activity archive, 2021. https://www.spaceweatherlive.com/en/archive.html (Erişim Tarihi: 05.05.2021)
  • OMNIWeb, 2021. https://omniweb.gsfc.nasa.gov/form/dx1.html (Erişim Tarihi: 18.05.2021)
  • Kakad B., Kakad A., Ramesh D.S., Lakhina G.S. 2019. Diminishing activity of recent solar cycles (22 – 24) and their impact on geospace. Journal of Space Weather and Space Climate, 9 A1.
  • Rathore B.S., Kaushik S.C., Bhadoria R.S. Parashar K.K., Gupta D.C. 2012. Sunspots and geomagnetic storms during solar cycle-23. Indian Journal of Physics, 86 (7): 563–567.
  • Silbergleit V.M. 2012. Probable values of current solar cycle peak. Advances in Astronomy, 2012 (Special Issue).
  • Bartels J. 1938. Potsdamer erdmagnetische Kennziffern, 1 Mitteilung. Zeitschrift für Geophysik, 14: 68–78.
There are 46 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Fuat Başçiftçi 0000-0002-5791-0676

Publication Date December 31, 2021
Submission Date June 20, 2021
Acceptance Date September 27, 2021
Published in Issue Year 2021 Volume: 10 Issue: 4

Cite

IEEE F. Başçiftçi, “24. GÜNEŞ DÖNGÜSÜ BOYUNCA MEYDANA GELEN JEOMANYETİK FIRTINALARIN DAĞILIMI”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 10, no. 4, pp. 1394–1403, 2021, doi: 10.17798/bitlisfen.955034.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS