Research Article
BibTex RIS Cite
Year 2022, Volume: 11 Issue: 3, 922 - 930, 30.09.2022
https://doi.org/10.17798/bitlisfen.1141741

Abstract

References

  • J. D. Enderle and J. D. Bronzino, Introduction to biomedical engineering. Academic Press, 2012.
  • W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, 2002.
  • E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. J. Hudspeth, Principles of neural science, vol. 4. McGraw-hill New York, 2000.
  • S. Zaqout and A. M. Kaindl, “Golgi-cox staining step by step,” Front Neuroanat, vol. 10, p. 38, 2016.
  • D. L. Schacter, D. T. Gilbert, and D. M. Wegner, “Psychology. Worth Publishers,” New York, 2011.
  • M. Shafiei, S. Jafari, F. Parastesh, M. Ozer, T. Kapitaniak, and M. Perc, “Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling,” Communications in Nonlinear Science and Numerical Simulation, vol. 84, p. 105175, 2020.
  • H. C. Tuckwell, Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories, vol. 8. Cambridge University Press, 2005.
  • J. N. Sleigh, A. M. Rossor, A. D. Fellows, A. P. Tosolini, and G. Schiavo, “Axonal transport and neurological disease,” Nature Reviews Neurology, vol. 15, no. 12, pp. 691–703, 2019.
  • L. C. Zayia and P. Tadi, “Neuroanatomy, motor neuron,” StatPearls [Internet], 2020.
  • J. E. Hall, Guyton and Hall textbook of medical physiology e-Book. Elsevier Health Sciences, 2015.
  • F. Rattay and T. Tanzer, “A simple model considering spiking probability during extracellular axon stimulation,” PLoS One, vol. 17, no. 4, p. e0264735, 2022.
  • B. Hille, Ion channels of excitable membranes, vol. 507. Sinauer Sunderland, MA, 2001.
  • E. M. Izhikevich, “Polychronization: computation with spikes,” Neural Comput, vol. 18, no. 2, pp. 245–282, 2006.
  • A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J Physiol, vol. 117, no. 4, p. 500, 1952.
  • R. Brette et al., “Simulation of networks of spiking neurons: A review of tools and strategies,” Journal of Computational Neuroscience, vol. 23, no. 3, pp. 349–398, Dec. 2007, DOI: 10.1007/S10827-007-0038-6.
  • A. Destexhe, M. Rudolph, J. M. Fellous, and T. J. Sejnowski, “Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons,” Neuroscience, vol. 107, no. 1, pp. 13–24, 2001, DOI: 10.1016/S0306-4522(01)00344-X.
  • L. Muller, R. Brette, and B. Gutkin, “Spike-timing dependent plasticity and feed-forward input oscillations produce precise and invariant spike phase-locking,” Frontiers in Computational Neuroscience, no. NOVEMBER, p. 8, Nov. 2011, DOI: 10.3389/FNCOM.2011.00045/FULL.
  • E. M. Izhikevich, Dynamical systems in neuroscience. MIT Press, 2007.
  • S. Weidmann, “Effect of current flow on the membrane potential of cardiac muscle,” The Journal of Physiology, vol. 115, no. 2, pp. 227–236, 1951.
  • A. v Andreev, V. A. Maksimenko, A. N. Pisarchik, and A. E. Hramov, “Synchronization of interacted spiking neuronal networks with inhibitory coupling,” Chaos, Solitons & Fractals, vol. 146, p. 110812, 2021.
  • P. L. Nunez and R. Srinivasan, Electric fields of the brain: the neurophysics of EEG. Oxford university press, 2006.
  • E. Niedermeyer and F. H. L. da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Baltimore: Williams Wilkins, 2005.
  • M. A. B. Brazier, “A history of the electrical activity of the brain: The first half-century.,” 1961.
  • H. Berger, “On the electroencephalogram of man. Third report.,” Electroencephalogr Clin Neurophysiol, p. Suppl-28, 1969.
  • G. Buzsáki and X.-J. Wang, “Mechanisms of Gamma Oscillations,” Annual Review of Neuroscience, vol. 35, no. 1, pp. 203–225, 2012, DOI: 10.1146/annurev-neuro-062111-150444.
  • V. B. Mountcastle, “The columnar organization of the neocortex.,” Brain, vol. 120 ( Pt 4, pp. 701–22, 1997, DOI: 10.1093/brain/120.4.701.
  • F. H. L. Da Silva, “The generation of electric and magnetic signals of the brain by local networks,” in Comprehensive human physiology, Springer, 1996, pp. 509–531.
  • J. F. Oliveira and A. Araque, “Astrocyte regulation of neural circuit activity and network states,” Glia, 2022.
  • C. Bédard, H. Kröger, and A. Destexhe, “Modeling extracellular field potentials and the frequency-filtering properties of extracellular space.,” Biophys J, vol. 86, no. 3, pp. 1829–1842, 2004, DOI: 10.1016/S0006-3495(04)74250-2.
  • S. M. Kang et al., “How to build a memristive integrate-and-fire model for spiking neuronal signal generation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 12, pp. 4837–4850, 2021.
  • E. M. Izhikevich, “Which model to use for cortical spiking neurons?”, IEEE Trans Neural Netw, vol. 15, no. 5, pp. 1063–1070, 2004.

Generation and Transmission of Action Potential in Nerve Cells and Neuron Populations Based on the Realistic Hodgkin-Huxley Neuron Model

Year 2022, Volume: 11 Issue: 3, 922 - 930, 30.09.2022
https://doi.org/10.17798/bitlisfen.1141741

Abstract

There are several types of nerve cells in the central nervous system. Thanks to the synaptic connections, these cells form large and complicated networks. However, these cells have a stereotypical electrical activity called action potential (AP) or spike. In this work, the mechanisms of formation of this typical electrical signal and the methods of transferring from one cell to another were investigated using Hodgkin-Huxley neuron model simulations. It has been seen that the formation of AP is based on the principle of "all or nothing" and that ion channel dynamics are critical in the typical form of AP. It has been shown that signal transduction between nerve cells is transmitted by post-synaptic potential and that these signals may be cell depolarizing or polarizing. Finally, it is discussed that these electrical activities are quantities that can be measured at micro and macro levels, and various methods are used for this purpose.

References

  • J. D. Enderle and J. D. Bronzino, Introduction to biomedical engineering. Academic Press, 2012.
  • W. Gerstner and W. M. Kistler, Spiking neuron models: Single neurons, populations, plasticity. Cambridge university press, 2002.
  • E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum, and A. J. Hudspeth, Principles of neural science, vol. 4. McGraw-hill New York, 2000.
  • S. Zaqout and A. M. Kaindl, “Golgi-cox staining step by step,” Front Neuroanat, vol. 10, p. 38, 2016.
  • D. L. Schacter, D. T. Gilbert, and D. M. Wegner, “Psychology. Worth Publishers,” New York, 2011.
  • M. Shafiei, S. Jafari, F. Parastesh, M. Ozer, T. Kapitaniak, and M. Perc, “Time delayed chemical synapses and synchronization in multilayer neuronal networks with ephaptic inter-layer coupling,” Communications in Nonlinear Science and Numerical Simulation, vol. 84, p. 105175, 2020.
  • H. C. Tuckwell, Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories, vol. 8. Cambridge University Press, 2005.
  • J. N. Sleigh, A. M. Rossor, A. D. Fellows, A. P. Tosolini, and G. Schiavo, “Axonal transport and neurological disease,” Nature Reviews Neurology, vol. 15, no. 12, pp. 691–703, 2019.
  • L. C. Zayia and P. Tadi, “Neuroanatomy, motor neuron,” StatPearls [Internet], 2020.
  • J. E. Hall, Guyton and Hall textbook of medical physiology e-Book. Elsevier Health Sciences, 2015.
  • F. Rattay and T. Tanzer, “A simple model considering spiking probability during extracellular axon stimulation,” PLoS One, vol. 17, no. 4, p. e0264735, 2022.
  • B. Hille, Ion channels of excitable membranes, vol. 507. Sinauer Sunderland, MA, 2001.
  • E. M. Izhikevich, “Polychronization: computation with spikes,” Neural Comput, vol. 18, no. 2, pp. 245–282, 2006.
  • A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J Physiol, vol. 117, no. 4, p. 500, 1952.
  • R. Brette et al., “Simulation of networks of spiking neurons: A review of tools and strategies,” Journal of Computational Neuroscience, vol. 23, no. 3, pp. 349–398, Dec. 2007, DOI: 10.1007/S10827-007-0038-6.
  • A. Destexhe, M. Rudolph, J. M. Fellous, and T. J. Sejnowski, “Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons,” Neuroscience, vol. 107, no. 1, pp. 13–24, 2001, DOI: 10.1016/S0306-4522(01)00344-X.
  • L. Muller, R. Brette, and B. Gutkin, “Spike-timing dependent plasticity and feed-forward input oscillations produce precise and invariant spike phase-locking,” Frontiers in Computational Neuroscience, no. NOVEMBER, p. 8, Nov. 2011, DOI: 10.3389/FNCOM.2011.00045/FULL.
  • E. M. Izhikevich, Dynamical systems in neuroscience. MIT Press, 2007.
  • S. Weidmann, “Effect of current flow on the membrane potential of cardiac muscle,” The Journal of Physiology, vol. 115, no. 2, pp. 227–236, 1951.
  • A. v Andreev, V. A. Maksimenko, A. N. Pisarchik, and A. E. Hramov, “Synchronization of interacted spiking neuronal networks with inhibitory coupling,” Chaos, Solitons & Fractals, vol. 146, p. 110812, 2021.
  • P. L. Nunez and R. Srinivasan, Electric fields of the brain: the neurophysics of EEG. Oxford university press, 2006.
  • E. Niedermeyer and F. H. L. da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Baltimore: Williams Wilkins, 2005.
  • M. A. B. Brazier, “A history of the electrical activity of the brain: The first half-century.,” 1961.
  • H. Berger, “On the electroencephalogram of man. Third report.,” Electroencephalogr Clin Neurophysiol, p. Suppl-28, 1969.
  • G. Buzsáki and X.-J. Wang, “Mechanisms of Gamma Oscillations,” Annual Review of Neuroscience, vol. 35, no. 1, pp. 203–225, 2012, DOI: 10.1146/annurev-neuro-062111-150444.
  • V. B. Mountcastle, “The columnar organization of the neocortex.,” Brain, vol. 120 ( Pt 4, pp. 701–22, 1997, DOI: 10.1093/brain/120.4.701.
  • F. H. L. Da Silva, “The generation of electric and magnetic signals of the brain by local networks,” in Comprehensive human physiology, Springer, 1996, pp. 509–531.
  • J. F. Oliveira and A. Araque, “Astrocyte regulation of neural circuit activity and network states,” Glia, 2022.
  • C. Bédard, H. Kröger, and A. Destexhe, “Modeling extracellular field potentials and the frequency-filtering properties of extracellular space.,” Biophys J, vol. 86, no. 3, pp. 1829–1842, 2004, DOI: 10.1016/S0006-3495(04)74250-2.
  • S. M. Kang et al., “How to build a memristive integrate-and-fire model for spiking neuronal signal generation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 12, pp. 4837–4850, 2021.
  • E. M. Izhikevich, “Which model to use for cortical spiking neurons?”, IEEE Trans Neural Netw, vol. 15, no. 5, pp. 1063–1070, 2004.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Makalesi
Authors

Ramazan Tekin 0000-0003-4325-6922

Publication Date September 30, 2022
Submission Date July 6, 2022
Acceptance Date September 5, 2022
Published in Issue Year 2022 Volume: 11 Issue: 3

Cite

IEEE R. Tekin, “Generation and Transmission of Action Potential in Nerve Cells and Neuron Populations Based on the Realistic Hodgkin-Huxley Neuron Model”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 11, no. 3, pp. 922–930, 2022, doi: 10.17798/bitlisfen.1141741.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS