Research Article
BibTex RIS Cite

NMR Spectroscopy in the Earth's Magnetic Field

Year 2023, Volume: 12 Issue: 2, 428 - 434, 27.06.2023
https://doi.org/10.17798/bitlisfen.1232239

Abstract

Magnetic imaging systems used today are quite expensive and are generally used for medical purposes. Apart from this purpose, there are many scientific fields of study whose internal structure is desired to be displayed. Especially in science, different from the techniques used to understand the internal structure of matter, magnetic imaging techniques are also needed. Therefore, the interest in more useful and smaller magnetic imaging systems is increasing. For this purpose, studies on magnetic particle imaging and magnetic resonance imaging techniques have gained momentum. The magnetic resonance imaging technique, which is one of the magnetic imaging systems based on the NMR phenomenon, has passed through numerous stages and has become smaller and more useful. This study examines the basic components of the NMR images made in the earth's magnetic field for different liquids, the T1 and T2 proton relaxation parameters, and the technique of the obtained two-dimensional images with the EFNMR system.

References

  • [1] C. Kurz, G. Buizza, G. Landry, F. Kamp, M. Rabe, C. Paganelli, G. Baroni, M. Reiner, P. Keall, C.A.T. Berg, and M. Riboldi, “Medical physics challenges in clinical MR guided radiotherapy,” Radiat. Oncol., vol. 15, no. 93, pp. 93-109, 2020, doi: 10.1186/s13014-020-01524-4.
  • [2] D. Qiu, Y. Cheng, and X. Wang, “Gradual back-projection residual attention network for magnetic resonance image super-resolution,” Comput. Methods Programs Biomed., vol. 208, pp. 106252, Sept. 2021, doi: 10.1016/j.cmpb.2021.106252.
  • [3] H. L. Ring, Z. Gao, A. Sharma, A., Z. H. Han, C. Lee, K. G. M. Brockbank, E. D. Greene, K. L. Helke, Z. Chen, and L. H. Campbell, “Imaging the distribution ofiron oxide nanoparticles inhypothermic perfused tissues,” Magn. Reson. Med., vol. 83, no. 5, pp. 1750-1759, Dec. 2020, doi: 10.1002/mrm.28123.
  • [4] T. Abe, R. S. Thiebaud, and J. P. Loenneke, “The mysterious values of adipose tissue density and fat content in infants: MRI-measured body composition studies,” Pediatric Res., vol. 90, no. 5, pp. 963-965, Jan. 2021, doi: 10.1038/s41390-021-01376-y.
  • [5] A. Abraham, E. Salager, D. Krishnan, and Y.C. Su, “Advances of solid-state NMR spectroscopy in material sciences,” Magn. Reson. Chem., vol. 58, no. 11, pp. 987, Oct. 2020, doi: 10.1002/mrc.5086.
  • [6] P. Chien, K. J. Griffith, H. Liu, Z. Gan, and Y. Hu, “Recent Advances in Solid-State Nuclear Magnetic Resonance Techniques for Materials Research,” Annu. Rev. Mater. Res., vol. 50, no. 1, pp. 493-520, May. 2020, doi: 10.1146/annurev-matsci-091019-011049.
  • [7] S. Bjorgvinsdottir, and L. Emsley, “Bulk hyperpolarization of inorganic materials,” Chimia, vol. 75, no. 4, pp. 333-337, Feb. 2021, doi: 10.2533/chimia.2021.333.
  • [8] G. Foran, N. Verdier, D. Lepage, C. Malveau, N. Dupre, and M. Dolle, “Use of solid-state NMR spectroscopy for the characterization of molecular structure and dynamics in solid polymer and hybrid electrolytes,” Polymers, vol. 13, no. 8, pp. 1207-1241, Apr. 2021, doi: 10.3390/polym13081207.
  • [9] H. Ovalıoğlu, “Application of nuclear magnetic resonance/magnetic resonance imaging techniques to estimate proton relaxation parameters at earth field,” Emerg. Mater. Res., vol. 11, no. 3, pp. 303–312, Sept. 2020, doi: 10.1680/jemmr.21.00180.
  • [10] Z. Yüksel, “Manyetik Rezonans Görüntüleme, Fizik Temelleri ve Sistem Bileşenleri,” BSJ Eng. Sci., vol. 2, no. 2, pp. 57-65, Apr. 2019.
  • [11] W. Catherine, C. K. Roth, and J. Talbot, MRI in Practice, 4th ed. USA, Wiley-Blackwell Publishing Ltd., 2011, pp: 21-58.
  • [12] M. Balcı, Basic 1H- and I3C-NMR Spectroscopy. Ankara-Turkey, Elsevier, 2005. pp. 9-23.
  • [13] G. Harald, NMR Spectroscopy , Weinheim-Germany, Wiley-VCH Verlag GmbH&Co, 2013, pp: 13-27.
  • [14] M. S. Hansen, and P. Kellman, P., “Image reconstruction: An overview for clinicians,” Magn. Reson. Imaging, vol. 41, no. 3, pp. 573-585, Jun. 2015, doi: 10.1002/jmri.24687.
  • [15] G. A. Wright, “Signal acquisition and processing for magnetic resonance imaging,” in Proc. ICIP-94, IEEE Comput. Soc. Press 1st Int. Conf. on Image Proc., Aug. 2002, pp. 523–527, doi: 10.1109/ICIP.1994.413751.
  • [16] E. Balci, B. Rameev, H. Acar, G.V. Mozzhukhin, B. Aktas, B. Colak, P.A. Kupriyanov, A.V. Levlev, Y.S. Chernyshev, and V.L. Chizhik, “Development of Earth's Field Nuclear Magnetic Resonance (EFNMR) technique for applications in security scanning devices,” Appl. Magn. Reson., vol. 47, no. 1, pp. 87-99, Oct. 2015, doi: 10.1007/s00723-015-0730-z.
  • [17] M. Trybus, “Measurements of Longitudinal and Transverse Relaxation Times of Selected Liquids Using the EFNMR Scanner,” Przeglad Elektrotechniczny, vol. 963, pp. 115-118, Oct. 2020, doi: 10.15199/48.2020.10.21.
  • [18] M. E. Halse, “Multi-acquisition and multi-dimensional earth’s field nuclear magnetic resonance spectroscopy,” Ph.D. dissertation, Dept. Phys., Victoria Univ. of Wellington, Wellington, New Zealand, 2009.
Year 2023, Volume: 12 Issue: 2, 428 - 434, 27.06.2023
https://doi.org/10.17798/bitlisfen.1232239

Abstract

References

  • [1] C. Kurz, G. Buizza, G. Landry, F. Kamp, M. Rabe, C. Paganelli, G. Baroni, M. Reiner, P. Keall, C.A.T. Berg, and M. Riboldi, “Medical physics challenges in clinical MR guided radiotherapy,” Radiat. Oncol., vol. 15, no. 93, pp. 93-109, 2020, doi: 10.1186/s13014-020-01524-4.
  • [2] D. Qiu, Y. Cheng, and X. Wang, “Gradual back-projection residual attention network for magnetic resonance image super-resolution,” Comput. Methods Programs Biomed., vol. 208, pp. 106252, Sept. 2021, doi: 10.1016/j.cmpb.2021.106252.
  • [3] H. L. Ring, Z. Gao, A. Sharma, A., Z. H. Han, C. Lee, K. G. M. Brockbank, E. D. Greene, K. L. Helke, Z. Chen, and L. H. Campbell, “Imaging the distribution ofiron oxide nanoparticles inhypothermic perfused tissues,” Magn. Reson. Med., vol. 83, no. 5, pp. 1750-1759, Dec. 2020, doi: 10.1002/mrm.28123.
  • [4] T. Abe, R. S. Thiebaud, and J. P. Loenneke, “The mysterious values of adipose tissue density and fat content in infants: MRI-measured body composition studies,” Pediatric Res., vol. 90, no. 5, pp. 963-965, Jan. 2021, doi: 10.1038/s41390-021-01376-y.
  • [5] A. Abraham, E. Salager, D. Krishnan, and Y.C. Su, “Advances of solid-state NMR spectroscopy in material sciences,” Magn. Reson. Chem., vol. 58, no. 11, pp. 987, Oct. 2020, doi: 10.1002/mrc.5086.
  • [6] P. Chien, K. J. Griffith, H. Liu, Z. Gan, and Y. Hu, “Recent Advances in Solid-State Nuclear Magnetic Resonance Techniques for Materials Research,” Annu. Rev. Mater. Res., vol. 50, no. 1, pp. 493-520, May. 2020, doi: 10.1146/annurev-matsci-091019-011049.
  • [7] S. Bjorgvinsdottir, and L. Emsley, “Bulk hyperpolarization of inorganic materials,” Chimia, vol. 75, no. 4, pp. 333-337, Feb. 2021, doi: 10.2533/chimia.2021.333.
  • [8] G. Foran, N. Verdier, D. Lepage, C. Malveau, N. Dupre, and M. Dolle, “Use of solid-state NMR spectroscopy for the characterization of molecular structure and dynamics in solid polymer and hybrid electrolytes,” Polymers, vol. 13, no. 8, pp. 1207-1241, Apr. 2021, doi: 10.3390/polym13081207.
  • [9] H. Ovalıoğlu, “Application of nuclear magnetic resonance/magnetic resonance imaging techniques to estimate proton relaxation parameters at earth field,” Emerg. Mater. Res., vol. 11, no. 3, pp. 303–312, Sept. 2020, doi: 10.1680/jemmr.21.00180.
  • [10] Z. Yüksel, “Manyetik Rezonans Görüntüleme, Fizik Temelleri ve Sistem Bileşenleri,” BSJ Eng. Sci., vol. 2, no. 2, pp. 57-65, Apr. 2019.
  • [11] W. Catherine, C. K. Roth, and J. Talbot, MRI in Practice, 4th ed. USA, Wiley-Blackwell Publishing Ltd., 2011, pp: 21-58.
  • [12] M. Balcı, Basic 1H- and I3C-NMR Spectroscopy. Ankara-Turkey, Elsevier, 2005. pp. 9-23.
  • [13] G. Harald, NMR Spectroscopy , Weinheim-Germany, Wiley-VCH Verlag GmbH&Co, 2013, pp: 13-27.
  • [14] M. S. Hansen, and P. Kellman, P., “Image reconstruction: An overview for clinicians,” Magn. Reson. Imaging, vol. 41, no. 3, pp. 573-585, Jun. 2015, doi: 10.1002/jmri.24687.
  • [15] G. A. Wright, “Signal acquisition and processing for magnetic resonance imaging,” in Proc. ICIP-94, IEEE Comput. Soc. Press 1st Int. Conf. on Image Proc., Aug. 2002, pp. 523–527, doi: 10.1109/ICIP.1994.413751.
  • [16] E. Balci, B. Rameev, H. Acar, G.V. Mozzhukhin, B. Aktas, B. Colak, P.A. Kupriyanov, A.V. Levlev, Y.S. Chernyshev, and V.L. Chizhik, “Development of Earth's Field Nuclear Magnetic Resonance (EFNMR) technique for applications in security scanning devices,” Appl. Magn. Reson., vol. 47, no. 1, pp. 87-99, Oct. 2015, doi: 10.1007/s00723-015-0730-z.
  • [17] M. Trybus, “Measurements of Longitudinal and Transverse Relaxation Times of Selected Liquids Using the EFNMR Scanner,” Przeglad Elektrotechniczny, vol. 963, pp. 115-118, Oct. 2020, doi: 10.15199/48.2020.10.21.
  • [18] M. E. Halse, “Multi-acquisition and multi-dimensional earth’s field nuclear magnetic resonance spectroscopy,” Ph.D. dissertation, Dept. Phys., Victoria Univ. of Wellington, Wellington, New Zealand, 2009.
There are 18 citations in total.

Details

Primary Language English
Journal Section Araştırma Makalesi
Authors

Cengiz Akay 0000-0002-8037-0364

Handan Engin Kirimli 0000-0003-0300-3381

Early Pub Date June 27, 2023
Publication Date June 27, 2023
Submission Date January 11, 2023
Acceptance Date May 22, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

IEEE C. Akay and H. Engin Kirimli, “NMR Spectroscopy in the Earth’s Magnetic Field”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 12, no. 2, pp. 428–434, 2023, doi: 10.17798/bitlisfen.1232239.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS