Phenylsulfonylpiperazines as α-Glucosidase Enzyme Inhibitors: Design, Synthesis, DFT Calculations, Docking and ADME Studies
Year 2024,
Volume: 13 Issue: 3, 723 - 730, 26.09.2024
Kerem Buran
,
Yiğit İnan
,
Gülşah Selin Akyüz
,
Celile Dervişoğlu Özdemir
,
Fatih Kocabas
Abstract
Diabetes Mellitus (DM), tüm dünyada insanları etkileyen en yaygın hastalıklardan biridir. Kandaki düşük insülin seviyeleri ve yüksek glikoz seviyeleri ile karakterizedir. DM'nin önemli bir tedavisi a-glikosidaz enziminin inhibisyonudur. Piperazin ve sülfonamid yapılarının çeşitli biyolojik aktiviteleri bilinmektedir. Bu çalışmada beş adet fenilsülfonil piperazin türevi sentezlenip enzim inhibisyon kapasiteleri değerlendirildi. Sentezlenen moleküller (1-5), a-glukosidaz enziminin iyi derecede inhibe ettiği görüldü. Bileşik 1, a-glukosidaz enzimi için en yüksek inhibisyon potansiyeline sahiptir. İnhibisyon yüzdesi (83,52±0,41), referans molekül olan quercetine (81,41±0,02) göre daha yüksektir. Olası protein-ligand etkileşimlerini belirlemek amacıyla a-glukosidaz enzimi için en güçlü bileşik 1 için silico moleküler yerleştirme çalışmaları yapıldı. Ayrıca kuantum mekanik ve elektronik özelliklerinin değerlendirilmesi için bir DFT çalışması yapılmıştır. Son olarak bileşiklerin ADME profilleri teorik olarak analiz edildi.
Ethical Statement
The study is complied with research and publication ethics.
Thanks
This project was supported by the University of Health Sciences, unit of scientific research project (BAP) (Project No:2020/040). The Gaussian calculations made in the article were made in the Marmara University Computational Chemistry Laboratory. We would like to thank Safiye Sağ Erdem for her support.
References
- [1] M. J. Fowler, “Microvascular and Macrovascular Complications of Diabetes,” Clinical Diabetes, vol. 26, no. 2, pp. 77–82, Apr. 2008.
- [2] M. Dehghan et al., “Progress toward molecular therapy for diabetes mellitus: A focus on targeting inflammatory factors,” Diabetes Res Clin Pract, vol. 189, p. 109945, Jul. 2022.
- [3] A. S. Alqahtani et al., “Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia,” Biomolecules, vol. 10, no. 1, 2020.
- [4] M. D. P. T. Gunawan-Puteri, E. Kato, and J. Kawabata, “α-Amylase inhibitors from an Indonesian medicinal herb, Phyllanthus urinaria,” J Sci Food Agric, vol. 92, no. 3, pp. 606–609, Feb. 2012.
- [5] E. Vitaku, D. T. Smith, and J. T. Njardarson, “Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals,” J Med Chem, vol. 57, no. 24, pp. 10257–10274, Dec. 2014.
- [6] M. K. Akkoç, M. Y. Yüksel, I. Durmaz, and R. E. Atalay, “Design, synthesis, and biological evaluation of indole-based 1,4-disubstituted piperazines as cytotoxic agents,” Turk J Chem, vol. 36, no. 4, pp. 515–525, 2012.
- [7] D. Mukherjee, A. Mukhopadhyay, K. S. Bhat, A. M. Shridhara, and K. S. Rao, “Synthesis, characterization and anticonvulsant activity of substituted 4- chloro-2-(4-piperazin-1-YL) quinazolines,” Int J Pharm Pharm Sci, vol. 6, no. 5, pp. 567–571, 2014.
- [8] T. Kálai, M. Khan, M. Balog, V. K. Kutala, P. Kuppusamy, and K. Hideg, “Structure-activity studies on the protection of Trimetazidine derivatives modified with nitroxides and their precursors from myocardial ischemia-reperfusion injury,” Bioorg Med Chem, vol. 14, no. 16, pp. 5510–5516, 2006.
- [9] K. Buran, R. Reis, H. Sipahi, and F. E. Önen Bayram, “Piperazine and piperidine-substituted 7-hydroxy coumarins for the development of anti-inflammatory agents,” Arch Pharm (Weinheim), vol. 354, no. 7, p. e2000354, 2021.
- [10] K. Buran, S. Bua, G. Poli, F. E. Ö. Bayram, T. Tuccinardi, and C. T. Supuran, “Novel 8-substituted coumarins that selectively inhibit human carbonic anhydrase IX and XII,” Int J Mol Sci, vol. 20, no. 5, 2019.
- [11] A. Ignat, V. Zaharia, C. Mogoşan, N. Palibroda, C. Cristea, and L. Silaghi-Dumitrescu, “Heterocycles 25. Microwave assisted synthesis of some p-toluensulfonyl- hydrazinothiazoles with analgesic and anti-inflammatory activity,” Farmacia, vol. 58, no. 3, pp. 290–302, 2010.
- [12] R. A. Finch, K. Shyam, P. G. Penketh, and A. C. Sartorelli, “1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-(methylamino)carbonylhydrazine (101M): A novel sulfonylhydrazine prodrug with bbroad-spectrum antineoplastic activity,” Cancer Res, vol. 61, no. 7, pp. 3033–3038, 2001.
- [13] M. Taha et al., “Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study,” Eur J Med Chem, vol. 141, pp. 530–537, 2017.
- [14] J. L. Xiao, R. S. Luo, Y. Shi, Q. Guo, Z. X. Zhou, and C. S. Zhao, “Synthesis, crystal structure and dft study of benzenesulfonamide compounds 1-ethyl-4-(phenylsulfonyl)piperazine and 1-((3-bromophenyi)sulfonyl)-4-methyipiperazine,” Molecular Crystals and Liquid Crystals, vol. 755, no. 1, pp. 80–90, 2023.
- [15] M. A. Abbasi et al., “Synthesis, enzyme inhibition and molecular docking studies of 1- arylsulfonyl-4-Phenylpiperazine derivatives,” Pak J Pharm Sci, vol. 30, no. 5, pp. 1715–1724, 2017.
- [16] K. Balan, P. Ratha, G. Prakash, P. Viswanathamurthi, S. Adisakwattana, and T. Palvannan, “Evaluation of invitro α-amylase and α-glucosidase inhibitory potential of N2O2 schiff base Zn complex,” Arabian Journal of Chemistry, vol. 10, no. 5, pp. 732–738, 2017.
- [17] A. Daina, O. Michielin, and V. Zoete, “SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules,” Sci Rep, vol. 7, no. October 2016, pp. 1–13, 2017.
- [18] C. W. Bauschlicher Jr. and H. Partridge, “A modification of the Gaussian‐2 approach using density functional theory,” J Chem Phys, vol. 103, no. 5, pp. 1788–1791, Aug. 1995.
- [19] A. M. Toth, M. D. Liptak, D. L. Phillips, and G. C. Shields, “Accurate relative pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods,” J Chem Phys, vol. 114, no. 10, pp. 4595–4606, Mar. 2001.
- [20] M. J. Frisch et al., “Gaussian 09, Revision A.02.” Gaussian, Inc., Wallingford CT, 2016.
- [21] M. Govindarajan and M. Karabacak, “Spectroscopic properties, NLO, HOMO–LUMO and NBO analysis of 2,5-Lutidine,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 96, pp. 421–435, Oct. 2012.
- [22] M. A. Mumit, T. K. Pal, M. A. Alam, M. A. A. A. A. Islam, S. Paul, and M. C. Sheikh, “DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate,” J Mol Struct, vol. 1220, p. 128715, Nov. 2020.
Year 2024,
Volume: 13 Issue: 3, 723 - 730, 26.09.2024
Kerem Buran
,
Yiğit İnan
,
Gülşah Selin Akyüz
,
Celile Dervişoğlu Özdemir
,
Fatih Kocabas
References
- [1] M. J. Fowler, “Microvascular and Macrovascular Complications of Diabetes,” Clinical Diabetes, vol. 26, no. 2, pp. 77–82, Apr. 2008.
- [2] M. Dehghan et al., “Progress toward molecular therapy for diabetes mellitus: A focus on targeting inflammatory factors,” Diabetes Res Clin Pract, vol. 189, p. 109945, Jul. 2022.
- [3] A. S. Alqahtani et al., “Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia,” Biomolecules, vol. 10, no. 1, 2020.
- [4] M. D. P. T. Gunawan-Puteri, E. Kato, and J. Kawabata, “α-Amylase inhibitors from an Indonesian medicinal herb, Phyllanthus urinaria,” J Sci Food Agric, vol. 92, no. 3, pp. 606–609, Feb. 2012.
- [5] E. Vitaku, D. T. Smith, and J. T. Njardarson, “Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals,” J Med Chem, vol. 57, no. 24, pp. 10257–10274, Dec. 2014.
- [6] M. K. Akkoç, M. Y. Yüksel, I. Durmaz, and R. E. Atalay, “Design, synthesis, and biological evaluation of indole-based 1,4-disubstituted piperazines as cytotoxic agents,” Turk J Chem, vol. 36, no. 4, pp. 515–525, 2012.
- [7] D. Mukherjee, A. Mukhopadhyay, K. S. Bhat, A. M. Shridhara, and K. S. Rao, “Synthesis, characterization and anticonvulsant activity of substituted 4- chloro-2-(4-piperazin-1-YL) quinazolines,” Int J Pharm Pharm Sci, vol. 6, no. 5, pp. 567–571, 2014.
- [8] T. Kálai, M. Khan, M. Balog, V. K. Kutala, P. Kuppusamy, and K. Hideg, “Structure-activity studies on the protection of Trimetazidine derivatives modified with nitroxides and their precursors from myocardial ischemia-reperfusion injury,” Bioorg Med Chem, vol. 14, no. 16, pp. 5510–5516, 2006.
- [9] K. Buran, R. Reis, H. Sipahi, and F. E. Önen Bayram, “Piperazine and piperidine-substituted 7-hydroxy coumarins for the development of anti-inflammatory agents,” Arch Pharm (Weinheim), vol. 354, no. 7, p. e2000354, 2021.
- [10] K. Buran, S. Bua, G. Poli, F. E. Ö. Bayram, T. Tuccinardi, and C. T. Supuran, “Novel 8-substituted coumarins that selectively inhibit human carbonic anhydrase IX and XII,” Int J Mol Sci, vol. 20, no. 5, 2019.
- [11] A. Ignat, V. Zaharia, C. Mogoşan, N. Palibroda, C. Cristea, and L. Silaghi-Dumitrescu, “Heterocycles 25. Microwave assisted synthesis of some p-toluensulfonyl- hydrazinothiazoles with analgesic and anti-inflammatory activity,” Farmacia, vol. 58, no. 3, pp. 290–302, 2010.
- [12] R. A. Finch, K. Shyam, P. G. Penketh, and A. C. Sartorelli, “1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-(methylamino)carbonylhydrazine (101M): A novel sulfonylhydrazine prodrug with bbroad-spectrum antineoplastic activity,” Cancer Res, vol. 61, no. 7, pp. 3033–3038, 2001.
- [13] M. Taha et al., “Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study,” Eur J Med Chem, vol. 141, pp. 530–537, 2017.
- [14] J. L. Xiao, R. S. Luo, Y. Shi, Q. Guo, Z. X. Zhou, and C. S. Zhao, “Synthesis, crystal structure and dft study of benzenesulfonamide compounds 1-ethyl-4-(phenylsulfonyl)piperazine and 1-((3-bromophenyi)sulfonyl)-4-methyipiperazine,” Molecular Crystals and Liquid Crystals, vol. 755, no. 1, pp. 80–90, 2023.
- [15] M. A. Abbasi et al., “Synthesis, enzyme inhibition and molecular docking studies of 1- arylsulfonyl-4-Phenylpiperazine derivatives,” Pak J Pharm Sci, vol. 30, no. 5, pp. 1715–1724, 2017.
- [16] K. Balan, P. Ratha, G. Prakash, P. Viswanathamurthi, S. Adisakwattana, and T. Palvannan, “Evaluation of invitro α-amylase and α-glucosidase inhibitory potential of N2O2 schiff base Zn complex,” Arabian Journal of Chemistry, vol. 10, no. 5, pp. 732–738, 2017.
- [17] A. Daina, O. Michielin, and V. Zoete, “SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules,” Sci Rep, vol. 7, no. October 2016, pp. 1–13, 2017.
- [18] C. W. Bauschlicher Jr. and H. Partridge, “A modification of the Gaussian‐2 approach using density functional theory,” J Chem Phys, vol. 103, no. 5, pp. 1788–1791, Aug. 1995.
- [19] A. M. Toth, M. D. Liptak, D. L. Phillips, and G. C. Shields, “Accurate relative pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods,” J Chem Phys, vol. 114, no. 10, pp. 4595–4606, Mar. 2001.
- [20] M. J. Frisch et al., “Gaussian 09, Revision A.02.” Gaussian, Inc., Wallingford CT, 2016.
- [21] M. Govindarajan and M. Karabacak, “Spectroscopic properties, NLO, HOMO–LUMO and NBO analysis of 2,5-Lutidine,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 96, pp. 421–435, Oct. 2012.
- [22] M. A. Mumit, T. K. Pal, M. A. Alam, M. A. A. A. A. Islam, S. Paul, and M. C. Sheikh, “DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate,” J Mol Struct, vol. 1220, p. 128715, Nov. 2020.